
Vertex Blending under DirectX 7 for the GeForce 256
Sim Dietrich

sim.dietrich@nvidia.com

What is Vertex Blending?

Traditional 3D animation operates on models which consist of a hierarchical series of rigid
bodies. This approach to animation produces artifacts, including interpenetration of model
sections and gaps between model segments. Vertex blending enables ‘skinning’ support that
addresses these issues.

‘Skinning’ is a technique that allows vertices to straddle more than one level of the model
hierarchy. The triangles that include these shared vertices become stretched between
hierarchy levels, thus eliminating gaps and hiding interpenetration. This allows artists a
greater level of control over animation. The GeForce 256 supports skinning through 2-matrix
vertex blending.

There is a demo of this on our web site.

What’s the Math behind Vertex Blending?

When using vertex blending under Direct3D 7, applications set up two model to world
matrices. Rather than just D3DTRANSFORMSTATE_WORLD, there is also a
D3DTRANSFORMSTATE_WORLD1.

A Vertex is transformed by both matrices, and its final position and normal are determined by
a linear interpolation between the results. The weighting factor of the lerp is supplied on a
per-vertex basis. The weighting factor is analogous to alpha in a standard alpha blend.

Final Position = VertexPosition * World (Weight) + VertexPosition * World1 (1 - Weight)
Final Normal = VertexNormal * World (Weight) + VertexNormal * World1 (1 - Weight)

So, as the weight varies from 0 to 1, the position changes from the position given from the
World matrix to that given by World1. The normal is lerped similarly. If you are using
vertex blending, ensure that D3DRENDERSTATE_NORMALIZENORMALS is set to
TRUE.

Vertex Blending is enabled on the GeForce256 by setting
D3DRENDERSTATE_VERTEXBLEND to D3DVB_1WEIGHT . When in this state, the
GeForce 256 will use both D3DTRANSFORMSTATE_WORLD and
D3DTRANSFORMSTATE_WORLD1 in its transform calculations. You must also supply a
floating point weight in your FVF format.

Vertex Blending is not available for vertices specified via D3DTLVERTEX.

http://www.nvidia.com/Marketing/developer/devrel.nsf/pages/9C6AD5C3DA139754882568310081DBC3

Per-Triangle Vertex Blending

In Direct3D, blending matrices are applied on a per vertex basis and cannot be changed within
a triangle, as shown on the left. The rightmost triangle would require the ability to switch
which two matrices were active from one vertex to the next.

The GeForce 256 supports 2 blending matrices per vertex. These are not divisible within a
triangle. In Direct3D, blending matrices are applied on a per vertex basis and cannot be
changed on a per primitive basis – in other words, you cannot reassign the blending matrices
within a Draw*Primitive* call. If you require more sophisticated vertex blending than this,
you have several options

1. Use the two most important matrices and discard the others
2. Perform the skinning transform in software. You can still use the rest of the TnL pipeline,

though. Pass in ‘root model space’, world, or view space geometry.

How to use Vertex Blending if starting from scratch

The highest performance use of vertex blending would leverage the GeForce 256 GPU to
perform simple parent-child skinning with 2 matrices per triangle. The application would set
the two appropriate matrices for each group of triangles that share them and send down the
weights as part of the vertex’s FVF format. Artists can specify a per-vertex weight, or could
have the engine generates automatically based on proximity to each bone.

What to do if your artists can’t live with just 2 bones

Certain types of animation are considerably easier for artists to create when allowed the
greater flexibility of having more than 2 matrices affect each triangle. Many engines use up to
4 bones per vertex, which can vary within a triangle.

For maximum performance on these models, simply compute the skinning on the CPU and
send the vertices down in world or view space. This leverages the TnL pipeline, as well as
projection and clipping. Developers have reported a 2x increase in performance over
performing all transform, lighting, clipping and projection on the CPU.

M0, M1

M2, M3

M4, M5M0, M1

M0, M1

M0, M1

Possible Not supported in GeForce 256

	How to use Vertex Blending if starting from scratch
	What to do if your artists can’t live with just 2 bones

