P9/P10®

Reference Guide Volume II I/O Registers

DRAFT

PROPRIETARY AND CONFIDENTIAL INFORMATION

3 Dlabs®

P9/10[®]

Reference Guide Volume II -

I/O Registers

PROPRIETARY AND CONFIDENTIAL INFORMATION

Issue 2

P9/P10 Reference Guide Volume II Front Matter

Proprietary Notice

The material in this document is the intellectual property of 3Dlabs. It is provided solely for information. You may not reproduce this document in whole or in part by any means. While every care has been taken in the preparation of this document, 3Dlabs accepts no liability for any consequences of its use. Our products are under continual improvement and we reserve the right to change their specification without notice. 3Dlabs may not produce printed versions of each issue of this document. The latest version will be available from the 3Dlabs web site.

- **3D***labs*products and technology are protected by a number of worldwide patents. Unlicensed use of any information contained herein may infringe one or more of these patents and may violate the appropriate patent laws and conventions.
- **3D***labs* ® is the worldwide trading name of **3D***labs*Inc. Ltd.
- **3D***labs*, GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or registered trademarks of **3D***labs*Ltd., **3D***labs*Inc. Ltd or **3D***labs*Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of Microsoft Corp. in the United States and/or other countries. OpenGL is a registered trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and recognized.

© Copyright 3DlabsInc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com Web: http://www.3dlabs.com

3D*labs*Ltd.

Meadlake Place
Thorpe Lea Road, Egham
Surrey, TW20 8HE
United Kingdom
Tel: +44 (0) 1784 470555

Tel: +44 (0) 1784 470555 Fax: +44 (0) 1784 470699 3DlabsK.K. Shiroyama JT Mori Bldg 16F 40301 Toranomon Minato-ku, Tokyo, 105, Japan Tel: +81-3-5403-4653 Fax: +91-3-5403-4646

3DlabsInc. 480 Potrero Avenue Sunnyvale, CA 94086, United States Tel: +1 (408) 530-4700

Fax: +1 (408) 530-4701

3D*labs* Proprietary and Confidential

Change History

Document	Issue	Date	Change
174.2.2 01	1	07 June 2001	Creation
174.2.2 02	2	28 Feb 2002	Joint P9+P10 edition = P10 base issue plus: • Added AGPDriveStrength register (new) to PCICSR • LUT bookmarks • Changes to BlockControl reg • Added Texture field to MemoryTranslationEnable • Removed AltTimingControlReg, • MemControl register updates • Miscl. Video register corrections; addresses changed from rel to absolute • Corrected Latency bit in VideoControl0 • Reserved 16-bit digital video mode bits in video port Mode • Added byRegionWidth • Clarify ClkOutControl of GenLockClkOut pin • PCIPII Drop bit • P9 configured registers • Corrected VideoScale conversion formula

User Note

This manual uses hyperlinks in MSWord file distributions to improve ease of access to relevant information for online users. To enable hyperlinks, the complete *Reference Guide* and *Programmer's Guide* file set need to be in a single Windows directory or folder.

This manual uses hyperlinks in MSWord file distributions to improve ease of access to relevant information for online users. To enable hyperlinks, the complete *Reference Guide* and *Programmer's Guide* file set should be in a single Windows directory or folder.

Where both P10 and P9 are in use, they should be placed in a common directory. All crosslinks use relative addressing. Configured variants are color-coded, e.g.:

Register Title [P9] - Indicates an entre configured register exclusive to a device type(s) Configured content [P9] – Indicates a configured field or other content

Minor changes are released progressively but only rolled up into a major release level when the volume of changes warrants it. Readers are therefore advised to check the file dates and download the current version of their document set from the 3Dlabs website to ensure accuracy.

i Proprietary and Confidential **3D**/a

Table of	able of Contents					
5 HARD\	WARE REGISTERS	5-1				
5.1.1	PCI Address Regions	5-2				
5.1.2	PCI Configuration Space	5-2				
5.1.3	Region Zero Control Registers	5-2				
5.1.4	Memory Apertures	5-2				
5.2 PC	I Bus Interface Registers	5-3				
5.2.1	Reset	5-3				
5.3 PC	I Configuration Region (0x00-0xFF)	5-3				
5.3.1	Predefined	5 - 3				
5.3.2	Base Address Registers ($0x10 - 0x28$)	5-10				
5.3.3	Expansion ROM Registers $(0x30 - 0x34)$	5-13				
5.3.4	AGP (0x40 - 0x4B)	5-19				
5.3.5	Power Management	5-22				
5.4 Mu	Iti-function registers	5-25				
5.4.1	Predefined Registers (Multi-function, function > zero)	5-25				
5.4.2	Base Address Registers (Multi-function, function > zero)	5-29				
5.4.3	AGP Registers (Multi-function, function > zero)	5-30				
5.4.4	Power Management Registers (Multi-function, function > zero)	5-30				
5.5 Ind	irect PCI Space Access to Regions 0 – 3 and ROM	5-30				
5.6 Re	gion 0 Reserved Registers (0x09000 – 0x0EFFF and 0x29000 – 0x2EFFF)	5-32				
5.7 Re	gion 0 Control Registers (0x0000-0x01FF)	5-32				
5.7.1	Bus Interface CSR $(0x00000 - 0x00FFF)$	5-32				
5.7.2	Interrupt Control (0x01000 – 0x01FFF) 4 K	5-40				
5.7.3	Video Head 0 Control (0x02000 – 0x02FFF) (4Kb)	5-46				
5.7.4	Memory Control (0x03000 - 0x03FFF) 4 K	5-139				
5.7.5	VGA Control 0x04000 - 0x04FFF 4 K	5-157				
5.7.6	ROM Control $(0x05000 - 0x05FFF)$ $(4KB)$	5-181				
5.7.7	Bypass Control (0x06000 – 0x06FFF) (4 KB)	5-183				
5.7.8	$Video\ Port\ Control\ 0x07000 - 0x07FFF\ (4K)$	5-189				
5.7.9	Video Head 1 Control (0x08000 – 0x08FFF) (4KB)	5-194				
5.7.10	Reserved $(0x09000 - 0x0EFFF)$ $(24KB)$	5-194				
5.7.11	$GPIO \ Driver (0x0F000 - 0x0FFFF)$	5-194				
5.7.12	GP10 User $(0x10000 - 0x1FFFF)$	5-203				
5.8 Me	mory Apertures 1 & 2	5-206				
	pansion ROM	5-206				
	A Registers (0xA0000 - 0xBFFFF)	5-211				
5.10.1	Fixed address decoding	5-211				
5.10.2	Memory Aperture Accesses	5-211				
5.10.3	Fixed I/O Addresses	5-212				
5.10.4	Indirect VGA 1/0 Registers	5-213				
5.10.5	Reading from a Region Zero register	5-213				
5.10.6	Writing to a Region Two Register	5-214				

 ${\bf 3}{\bf D} labs$ Proprietary and Confidential

5

Hardware Registers

This manual uses hyperlinks in **MSWord** file distributions to improve ease of access to relevant information for online users. To enable hyperlinks, the complete *Reference Guide* and *Programmer's Guide* file set should be in a single Windows directory or folder.

Where both P10 and P9 are in use, they should be placed in a common directory. All crosslinks use relative addressing. Configured variants are color-coded:

- Register Title [p9] Indicates a configured register
- Configured content [P9] Indicates a field or other content which is differently configured for P9, P10 etc.
- References to "P10" should be considered applicable to P9 unless there is a specific configuration variant.

Minor changes are released progressively but only rolled up into a major release level when the volume of changes warrants it. Readers are therefore advised to check the file dates and download the current version of their document set from the 3Dlabs website to ensure accuracy.

Chapter 5 lists P9/P10 hardware registers by region and functional offset group. Within each group, the registers are listed alphanumerically. Exceptionally, graphics core "software" registers (offset 8000-9FFF) are shown in chapter 6. Volumes II and III are P9/P10 common data with configuration notes to clarify differences between the two. See for example PrimSetupMode in volume III, Core Graphics.

Register details have the following format information:

Name The register's name. Where register layout is configured for P9 the register name is

shown in red in online versions or dark gray in printed versions.

Type The region in which the register functions.

Offset The offset of this register from the base address of the region.

Format Can be bitfield or integer.

Bit Bit Name

Read Indicates whether the register bit can be read from. A ✓ mark indicates the register

can be read from, a X indicates the register bit is not readable.

Write Indicates whether the register bit can be written to. A ✓ mark indicates the register

can be written to, a X indicates the register bit is not writable.

Reset The value of the register following hardware reset.

Description In the register descriptions:

Reserved Bits Indicates bits that may be used in future members of the Permedia family. To ensure

upwards compatibility software should not assume a value for these bits when read.

Not Used/ Indicates bits that are adjacent to numeric fields. These may be used in future Unused Bits members of the Permedia family, but only to extend the dynamic range of these

fields. The data returned from a read of these bits is undefined. When a Not Used field resides in the most significant position, a good convention to follow is to sign extend the numeric value, rather than masking the field to zero before writing the register. This will ensure compatibility if the dynamic range is increased in future.

Reserved Write accesses to reserved registers are accepted by the bus interface but the data is **Registers** discarded. Read accesses return 0. Data written to reserved registers is never

forwarded

Configured The register name is shown in *red italics* in online versions (or gray on printed

Registers manuals). The configured fields or data are shown with vellow background in online

versions.

3Dlabs Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

For enumeration fields that do not specify the full range of possible values use only the specified values. An example of an enumeration field is the comparison field in the **DepthMode** register. Future chips may define a meaning for the unused values.

5.1.1 PCI Address Regions

The PCI Slave interface implements six PCI Address Regions, shown in the table below. The standard VGA compatible Memory and I/O Space addresses are decoded when the device has been suitably configured. These addresses do not form a single contiguous region, but are mentioned in the table for completeness:

PCI Address Regions							
Region	Address Space	Size (bytes)	Description	Comments			
Config	Configuration	256	PCI Configuration	PCI Special			
Zero	Memory	256 K	Control Registers	relocatable			
One	Memory	configured	Memory Aperture One	relocatable			
Two	Memory	configured	Memory Aperture Two	relocatable			
ROM	Memory	64 K	Expansion ROM	relocatable			
VGA	Memory & I/O	-	VGA Address	optional & fixed			

5.1.2 PCI Configuration Space

The PCI Configuration Space is intended to provide an appropriate set of configuration 'hooks' which satisfy the needs of current and anticipated system configuration mechanisms. The registers in this 256-byte space are accessed and modified by the use of PCI Configuration Read and Write commands, and are normally initialised by BIOS or similar low-level code at system power-up and reset.

When configured for multi-function operation the bus interface provides a unique 256-byte configuration space for each PCI function, but will map accesses to other regions to the same underlying hardware regardless of the function being addressed.

5.1.3 Region Zero Control Registers

Region Zero is a 256 KByte region containing control registers, and ports to and from the graphics processor. The control space is mapped twice within the 256 KByte region. In the second 128K the registers are mapped to be byte swappable for big endian hosts. See Section 3 of this document for further details of Region Zero.

5.1.4 Memory Apertures

Two separate apertures are provided to allow access to local memory. Each has a programmable size and can be disabled if required.

As well as being used to access local memory, these two apertures can also be programmed to allow reading and writing of the Expansion ROM. This ensures that the "ROM" is visible beyond system boot time, allowing an EEPROM device to be reprogrammed in the field. Finally, either aperture can be programmed to forward memory accesses to the VGA memory controller.

5-2 Proprietary and Confidential **3D**/a

5-3

5.2 PCI Bus Interface Registers

The bus interface contains a number of PCI Configuration Registers, and also various Control Status registers for the chip, with accesses to these registers being handled entirely by the bus interface unit.

The bus interface also accesses the read-back path from the Graphics Processor. This is used to access registers in the GP without passing through the pipeline. The read-back operates by sending a tag to the read-back port and waiting a set number of clocks. When the delay has expired, data from the register corresponding to the tag will be present on the read-back port.

A separate port is provided to forward accesses to the RAMDAC Interface. The VGA unit is accessed via the Bypass FIFO. A separate port is also provided to access the EEPROM and VMI interface. The related registers are described below.

5.2.1 Reset

During soft reset the PCI Bus Region 0 registers are reset with the GP input and output FIFOs. However the bus master and slave state machines continue to run, which can result in the PCI trying to load the GPInFIFO during a reset. For details on Configuration and the Reset process see *P9/P10 Reference Guide* Volume IV, *Reset*.

Driver software must write to a PCI configuration register to disable the bus master before asserting a software reset. This ensures that the master is not trying to load the GP Input FIFO during a reset.

Note.

When bus retries are disabled, the current implementation accepts and then discards all write accesses to the GP Input FIFO — this is different from the manner in which Bypass accesses are handled. The situation only occurs if driver software performs a soft reset and does not check that it has completed before writing to the FIFO.

5.3 PCI Configuration Region (0x00-0xFF)

The registers in this region have the following functions:

- Read device configuration from ROM following a bus reset.
- Decode PCI register inputs and generate control signals for the device.
- Compare incoming slave addresses with PCI Base Addresses.

When configured for multi-function operation the bus interface provides a unique 256-byte configuration space for each PCI function, but will map accesses to other regions to the same underlying hardware regardless of the function being addressed.

For ease of reference the configuration registers are categorized as:

- 1. Predefined
- 2. Base Address
- 3. AGP
- 4. Power Management
- 5. Multi-function
- 6. Indirect

5.3.1 Predefined

This section describes the predefined registers in the standard Type 00h Configuration Space header

CFGVendorID

Name	Туре	Offset	Format	
CFGVendorID	Configuration	0x00	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
015	Vendor ID	1	×	0x3D3	3Dlabs Company Code
				D	
1631					See CFGDeviceID

Notes: Vendor Identification Number, 3D3D = **3D**labs Company code

3D*labs* Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

CFGDeviceID

Name	Туре	Offset	Format
CFGDeviceID	Configuration	0x02	Integer

Control register

Bits	Name	Read	Write	Reset	Description
015	DeviceID	<u>/</u>	×	0x0024 0x0020	[P9] = 0024h when AltDeviceId is 0 = 0026h when AltDeviceId is 1 [P10] = 0020h when AltDeviceId is 0 = 0022h when AltDeviceId is 1
1631	Reserved	×	×		

Notes: AltDeviceId 0 = 3Dlabs P9/P10 device, AltDeviceId 1 = alternative device

5-4 Proprietary and Confidential ${f 3D} la$

CFGCommand

Name	Туре	Offset	Format
CFGCommand	Configuration	0x04	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	I/O Space Enable	1	×	0	0 = Disable Accesses $1 = Enable Accesses$ If $VgaEnable$ and $VgaFixed$ are not both set, then fixed VGA addressing is disabled and this bit will be zero (read only).
1	Memory Space Enable	1	1	0	0 = Disable Accesses 1 = Enable Accesses
2	Bus Master Enable	1	1	0	0 = Disable access 1 = Enable access
3	Special Cycle Enable	1	×	0	0 - P10 never responds to special cycle accesses
4	Memory Write and Invalidate Enable	1	×	0	0 = "Memory Write and Invalidate" is never generated.
5	SVGA Palette Snoop Enable	✓	1	0	0 = Treat palette accesses like other SVGA accesses 1 = Enable SVGA Palette snooping If VgaEnable and VgaFixed are not both set, then fixed VGA addressing will be disabled and this bit will be zero (read only).
6	Parity Error Response enable	1	×	0	0: P9/P10 does not support parity error reporting
7	Address/Data stepping enable	1	×	0	0: P9/P10 does not perform stepping
8	SERR driver	1	×	0	0: P9/P10 does not support parity error reporting
9	Master Fast Back-to-Back Enable	1	×	0	0: P9/P10 master does not do fast back-to-back accesses
1015	Reserved	1	×	0	

Notes: The command register provides control over a device's ability to generate and respond to PCI cycles. Writing 0 to a field in this register disconnects the specified device from the PCI for all except configuration accesses.

3D labs

Hardware Registers P9/P10Reference Guide Volume II

CFGStatus

Name	Type	Offset	Format
CFGStatus	Configuration	0x06	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Reserved	1	×	from PADP CIClk 66 pin	
4	Cap_List	1	1	1	1 = Capabilities Pointer is implemented from PCI 2.2 Spec.
5	66MHz Capable	1	×	From pin	Bit 5 is set to value of PADPCIClk66 pin ¹ where 0 = device is 33 MHz capable only 1 = device is 66 MHz capable
6	Reserved	1	×	0000b	
7	Fast back-to- back capable	1	×	1	1 = device can accept fast back-to-back PCI transactions
8	Master Data Parity Error	1	×	0	device does not implement parity checking
910	DEVSEL Timing	1	×	01b	0xib = device asserts DEVSEL# at medium speed
11	Signaled Target Abort	1	×	0	device never signals Target-Abort
12	Received Target Abort	1	1	1	This bit is set by the bus master whenever its transaction is terminated with Target-Abort
13	Received Master Abort	1	1	1	This bit is set by the R5 bus master whenever its transaction is terminated with Master-Abort
14	Signalled System Error	1	×	0	device never asserts a system error
15	Detected Parity Error	1	×	0	device does not implement parity checking

Notes: The Status register is used to record status information for PCI bus related events. Reads to this register behave normally. Writes function differently in that bits can be reset, but not set ("Write-to-clear"). A bit is reset whenever the register is writen and the data in the corresponding bit location is a one.

5-6 Proprietary and Confidential **3D***la*

¹ This uses a dual-purpose configuration pin. On P10 this is the *VidAHSync* pin. On P9 it is the *VidInData(0)* pin. For more information see the Reset chapter and Pinlist in *Reference Guide* volume IV.

CFGRevisionID

Name	Туре	Offset	Format
CFGRevisionID	Configuration	0x08	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	RevisionID	1	×	0x1	Revision Identification Number - 0x01 = Revision
					R01

Notes:

CFGClassCode[InterfaceClass]

Name	Туре	Offset	Format
CFGClassCode[Interface	Configuration	0x09	Bitfield
ClassCode]			

Control register

Bits	Name	Read	Write	Reset	Description
07	Interface	'	×	Configured	Lower byte of ClassCode register. 00 = VGA or Other Display Controller

Notes: The lower byte of the **ClassCode** register identifies a specific register-level programming interface, so that device-independent software can interact with the device. The reset value of this register is determined by **CFGBusConfig**.

3D labs

CFGClassCode

The Class Code register is read-only, and is used to identify the generic function of the PCI device. The register is best viewed as three byte-sized sub-registers, detailed below. The reset value of this register is determined by the contents of the CFGBusConfig register as follows:

	CFGB	usConfi	g	CF	GClassCo	ode	Meaning (see PCI 2.2
Base Class Zero	Vga Enable	Vga Fixed	SubClass3D (x = 0 or 1)	Base Class	Sub Class	Interface	Specification Appendix D)
0	0	X	0	03h	80h	00h	"other" display controller
0	0	X	1	03h	02h	00h	3D controller
0	X	0	0	03h	80h	00h	"other" display controller
0	X	0	1	03h	02h	00h	3D controller
0	1	1	X	03h	00 h	00h	VGA-compatible controller
1	0	X	X	00h	00 h	00h	non VGA-compatible device
1	X	0	X	00h	00 h	00 h	non VGA-compatible device
1	1	1	X	00h	01h	00 h	VGA-compatible device

- If the BaseClassZero bit in the CFGBusConfig register is zero, the Base Class is reported as 03h, since this device is a PCI display controller.
- If this bit is 1 (one) then the Base Class is reported as 00h, which allows Windows 95 to boot even though it may not interpret display controller class codes correctly.
- If the VgaEnable and VgaFixed bits are both one, the device is a VGA controller and fixed VGA address
 decoding will be enabled.

CFGClassCode[SubClass]

Name	Туре	Offset	Format	
CFGClassCode[SubClass]	Configuration	0x0A	Bitfield	
	Control tegister			

Bits	Name	Read	Write	Reset	Description
07	SubClass	~	×	Configured	Middle byte of ClassCode register

Notes: The middle byte of the **ClassCode** register identifies the function of the device in more detail. The reset value of this register is determined by **CFGBusConfig**.

5-8 Proprietary and Confidential **3D**/a

CFGClassCode[BaseClass]

Name	Туре	Offset	Format
CFGClassCode[BaseClass]	Configuration	0x0B	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
07	BaseClass	~	×	configured	Upper byte of ClassCode register, classifies function type

Notes: The ClassCode register is read-only, and is used to identify the generic function of the device (see CFGClassCode table for definition) The register is best viewed as three byte-sized sub-registers including Subclass and Interfaceclass. The reset value is determined by CFGBusConfig

CFGCacheLine

Name	Туре	Offset	Format
CFGCacheLineSize	Configuration	0x0C	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Cache Line Size	1	×	0x00	00= Cache line size (not supported)

Notes: This register specifies the cache line size in units of 32 bit words. It is only implemented for PCI bus masters that use the "memory write and invalidate" command. The PCI bus master does not use this command so this register is zero and read-only

CFGLatencyTimer

Name	Туре	Offset	Format	
CFG Latency Timer	Configuration	0x0D	Integer	
	Control register	r		

Bits	Name	Read	Write	Reset	Description
07	Latency Timer Count	✓	✓	0x00	Sets the max number of PCI Clock cycles for master burst accesses

Notes: This register specifies, in PCI bus clocks, the value of the latency timer for this PCI bus master

3Dlabs Proprietary and Confidential

CFGHeaderType

Name	Туре	Offset	Format
CFGHeaderType	Configuration	0x0E	Integer

Control register

Bits	Name	Read	Write	Reset	Description	
06	Header Type	1	×	from	0x00 = type 00 header layout	
				CFGF		
				unCo		
				nfig		
7	Multifunction	1	×	0	PCI Definition: 0 = Single Function Device	
					1 = Multifunction device	

Notes: The register identifies the layout of the second part of the predefined header (beginning at byte 10h in Configuration Space) and whether or not the device contains multiple functions. The reset value is set in **CFGFunConfig**.

CFGBuilt In Self-Test

Name	Туре	Offset	Format
CFGBIST	Configuration	0x0F	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	BIST	1	×	0x00	00 = BIST is unsupported over the PCI interface

Notes: Optional register used for control and status of Built-In Self Test (BIST).

5.3.2 Base Address Registers (0x10 – 0x28)

The Base Address registers allow boot software to relocate PCI devices in memory address space. At system power-up, device-independent software must be able to determine what devices are preset, build a consistent address map, and determine if a device has an Expansion ROM. These Base Address registers allow power-up software to determine the size of each Region, and set its base address within the memory map.

The predefined type 00h configuration header has six DWORD locations allocated for Base Address registers, starting from offset 10h in Configuration Space. This PCI device implements three Base Address registers, and the width of these registers is determined by the *PciAddress64* field in the CFGBusConfig register. The first Base Address register CFGBaseAddr0 is always located at offset 10h. The offsets of the subsequent registers CFGBaseAddr2 are determined by the size of previous Base Address registers.

5-10 Proprietary and Confidential **3D**/a

5-11

CFGCardBusCISPointer

Name	Туре	Offset	Format
CFGCardBusCISPointer	Configuration	0x28	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
0.31	CardBus CIS	1	×	0x000	Not implemented
	Pointer			0.0000	

Notes: This register is optional and is not implemented.

CFGSubsystemVendorld

Name	Туре	Offset	Format	
CFGSubsystemVendorId	Configuration	0x2C	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
015	Subsystem VendorID	✓	×	0x3D3 D	or loaded from ROM

Notes: This register is used to identify the vendor of the add-in board or subsystem where the PCI device resides, and is normally loaded from the ROM during device initialisation – see Chapter 10, Reset, in Reference Guide Volume IV.

CFGSubsystemId

Name	Туре	Offset	Format	
CFGSubsystemId	Configuration	0x02E	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
015	SubsystemId	×	✓ once	0x002 0	or loaded from ROM

Notes: This register is used to identify the add-in board on which the PCI device resides. The reset value is normally loaded from ROM during device initialisation – see Chapter 10, Reset, in Reference Guide Volume IV.

3 D*labs* Proprietary and Confidential

CFGCapabilitiesPtr

Name	Туре	Offset	Format
CFGCapabilitiesPtr	Configuration	0x34	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Capability Ptr	✓	×	0x4C	Pointer to Power Management capability, address 0x4C.
831	Reserved	×	×	0	

Notes: This register holds an eight bit pointer used to provide an offset into the configuration space for the first item in a capabilities list of one of more configuration register sets, each of which supports a new feature or capability.

CFGInterruptLine

Name	Туре	Offset	Format
CFG InterruptLine	Configuration	0x3C	Integer
	Control revister		

Bits	Name	Read	Write	Reset	Description
07	Interrupt Line	1	1	0	Not read or written by this device itself.

Notes: The Interrupt Line register in an 8-bit register used to communicate interrupt line routing information. It is available for use by device drivers and operating systems but is not used by the PCI device itself..

5-12 Proprietary and Confidential **3D**/a

5-13

CFGInterruptPin

Name	Туре	Offset	Format
CFGIntPin	Configuration	0x3D	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Interrupt Pin	1	×	0x01	0x01 = uses Interrupt pin INTA#

Notes: The Interrupt Pin register tells the BIOS which interrupt line this device uses.

CFGMinGnt

Name	Туре	Offset	Format
CFGMinGrant	Configuration	0x3E	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description	
0-7	Minimum grant	1	×	0xC0	0xC0 = 48 microseconds	

Notes: This register specifies how long a burst period the PCI device needs.

CFGMaxLat

Name	Туре	Offset	Format
CFGMaxLat	Configuration	0x3F	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Maximum latency	1	×	0xC0	0xC0 = 48 microseconds

Notes: This register specifies how often the PCI device needs to gain access to the PCI bus.

5.3.3 Expansion ROM Registers (0x30 – 0x34)

The registers allow boot software to determine if a device has an Expansion ROM. These Base Address registers allow power-up software to determine the size of each Region, and set its base address within the memory map.

The predefined type 00h configuration header has six DWORD locations allocated for Base Address registers, starting from offset 10h in Configuration Space. This PCI device implements three Base Address registers, and the width of these registers is determined by the *PciAddress64* field in the CFGBusConfig register. The first Base Address register CFGBaseAddr0 is always located at offset 10h. The offsets of the subsequent registers CFGBaseAddr2 are determined by the size of previous Base Address registers.

3D*labs* Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

5.3.3.1 32- and 64-bit Base Address Registers

When <u>PciAddress64</u> is zero, the three Base Address registers are all 32 bits wide. When **PciAddress64** is one, the three Base Address registers are all 64 bits wide.

Definitions for both the 32-bit and the 64-bit versions of each Base Address register are given below, although obviously only one width will be visible at any given time depending on the value of **PciAddress64**. When the Base Address registers are only 32 bits wide, the three DWORD locations starting at offset 1Ch are always zero.

5-14 Proprietary and Confidential **3D***la*

CFGBaseAddress0 [32-bit]

Name	Туре	Offset	Format
CFGBaseAddr0	Configuration	0x10	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
0	Memory Space	1	×	See	0 = Region Zero is in PCI memory space.
	Indicator			Notes	
12	Address Type	1	×	00b	00b = Locate anywhere in 32 bit address space
3	Prefetchable	1	×	See	0 = Region is not prefetchable.
				Notes	
417	Size Indication	1	×	See	0 = Control registers must be mapped into 256
				Notes	Kbyte region.
1831	Base Address	1	1	See	Loaded by software at boot time to set base address
				Notes	of PCI Region 0

Notes: Bse address registers allow boot software to relocate PCI devices in memory. The predefined type 00h configuration header has six DWORD locations for Base Address registers, starting from offset 10h in Configuration Space. This PCI device implements three Base Address registers, and the width of these registers is determined by the **PciAddress64** field in the CFGBusConfig register. The first Base Address register **CFGBaseAddr0** is always located at offThe Base Address 0 register contains the base address of the Control Region and defines the size and type of this region. This register has a 32-bit format when **PciAddress64** = zero. Reset value is configured by **CFGBusConfig**. – see Chapter 10, Reset, in Reference Guide Volume IV.

CFGBaseAddress0 [64-bit]

Name	Туре	Offset	Format	
CFGBaseAddr0	Configuration	0x10	Bitfield	
	Control register			

Bits	Name	Read	Write	Reset	Description
0	Memory Space	✓	×	See Notes	0 = Region Zero is in PCI memory space.
12	Address Type	1	×	10b	10b = Locate anywhere in 64-bit address space
3	Prefetchable	1	×	See Notes	0 = Region is not prefetchable.
417	Size Indication	1	×	See Notes	0 = Control registers must be mapped into 256 Kbyte region.
1863	Base Address	1	1	See Notes	These bits reset to zero and are loaded by software at boot time to set the base address of Region Zero.

Notes: This register has a 64-bit format when <u>PciAddress64</u> is one. The Base Address 0 register contains the base address of the Control Region and defines the size and type of this region. Reset value is configured by <u>CFGBusConfig.</u> – see Chapter 10, Reset, in Reference Guide Volume IV.

3Dlabs Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

CFGBaseAddress1 [32-bit]

Name	Туре	Offset	Format
CFGBaseAddr1	Configuration	0x14	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Memory Space	1	×	See	0 = Region Zero is in PCI memory space.
12	Address Type	1	X	00b	00b = Locate anywhere in 32 bit address space
3	Prefetchable	1	×	See notes	= 0 when PciPrefetchable is 0 = 1 when PciPrefetchable is 1
4M	Size Indication	1	×	See notes	These bits are read-only zero to indicate the region size.
N31	BaseAddress	1	√	See notes	These bits reset to zero, and are loaded by software at boot time to set the base address of Region One where $N = (Base1AddrSize + 16)$ and $M = (N - 1)$.

Notes:

- The Base Address 1 register contains the base address of Memory Aperture One and defines the size and type of this region.
- The predefined type 00h configuration header has six DWORD locations allocated for Base Address registers, starting from offset 10h in Configuration Space. This PCI device implements three Base Address registers, and the width of these registers is determined by the *PciAddress64* field in the CFGBusConfig register.
- The first Base Address register CFGBaseAddr0 is always located at offset 10h. The
 offsets of the subsequent registers CFGBaseAddr1 and CFGBaseAddr2 are
 determined by the size of previous Base Address registers.
- When <u>Base1AddrSize</u> is zero, this register is Zero and Read-Only.
- This register has a 32-bit format when <u>PciAddress64</u> = zero. Reset value is configured by <u>CFGBusConfig</u>. see Chapter 10, Reset, in Reference Guide Volume IV.

5-16 Proprietary and Confidential **3D**/a

CFGBaseAddress1 [64-bit]

Name	Туре	Offset	Format
CFGBaseAddr1	Configuration	0x18	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Memory Space	1	×	See	0 = Region One is in PCI memory space.
	Indicator			notes	
12	Address Type	1	×	10b	10b = Locate anywhere in 64 bit address space
3	Prefetchable	1	×	See	= 0 when PciPrefetchable is 0
				notes	= 1 when PciPrefetchable is 1
4M	Size Indication	1	×	See	These bits are read-only zero to indicate the region
				notes	size.
N63	BaseAddress	1	1	See	These bits reset to zero, and are loaded by software
				notes	at boot time to set the base address of Region One
					where $N = (\underline{Base1 Addr Size} + 16)$ and $M = (N - 1)$.

Notes: The BaseAddress1 register contains the base address of Memory Aperture One and defines the size and type of this region. This register has a 64-bit format when PciAddress64 = one. When Base1AddrSize is zero this register is Zero and Read-Only. The reset value is configured by CFGBusConfig. – see Chapter 10, Reset, in Reference Guide Volume IV.

3 D*labs*

CFGBaseAddress2 [32-bit]

Name	Туре	Offset	Format
CFGBaseAddr0	Configuration	0x18	Bitfield
	Control register		

0	Memory Space	1	×	See	0 = Region Two is in PCI memory space.
	Indicator			notes	
12	Address Type	1	×	00b	00b = Locate anywhere in 32 bit address space
3	Prefetchable	1	×	See	= 0 when PciPrefetchable is 0
				notes	= 1 when PciPrefetchable is 1
4M	Size Indication	1	×	See	These bits are read-only zero to indicate the region
				notes	size.
N31	BaseAddress	1	1	See	These bits reset to zero, and are loaded by software
				notes	at boot time to set the base address of Region Two
					where $N = (\underline{Base2AddrSize} + 16)$ and $M = (N - 1)$.

Notes: This register has a 32-bit format when **PciAddress64** is 0. The Base Address 2 register contains the base address of Memory Aperture Two and defines the size and type of this region. When Base2AddrSize is zero, this register is Zero and Read-Only. Reset value is configured by **CFGBusConfig.** – see Chapter 10, <u>Reset</u>, in Reference Guide Volume IV.

5-18 Proprietary and Confidential **3D***la*

CFGBase Address2 [64-bit]

Name	Type	Offset	Format
CFGBaseAddr2	Configuration	0x20	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Memory Space Indicator	1	×	See notes	0 = Region Two is in PCI memory space.
12	Address Type	1	×	10b	10b = Locate anywhere in 64 bit address space
3	Prefetchable	1	×	See notes	= 0 when PciPrefetchable is 0 = 1 when PciPrefetchable is 1
4M	Size Indication	1	×	See notes	These bits are read-only zero to indicate the region size.
N63	BaseAddress	1	√	See notes	These bits reset to zero, and are loaded by software at boot time to set the base address of Region One where $N = (Base1 \land AddrSize + 16)$ and $M = (N - 1)$.

Notes: The **BaseAddress2** register contains the base address of Memory Aperture One and defines the size and type of this region. This register has a 64-bit format when **PciAddress64** = one. When **Base2AddrSize** is zero this register is **Zero** and **Read-Only**. The reset value is configured by **CFGBusConfig.** – see Chapter 10, **Reset**, in **Reference Guide** Volume IV.

CFGRomAddr

Name	Туре	Offset	Format
CFGRomAddr	Configuration	0x30	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Address	1	×	0x000	0 = disable Expansion ROM accesses
O .	Decode Enable	•	^	00000	1 = enable Expansion ROM accesses
	Decode Enable			00000	1
					The device only responds to accesses to the
					Expansion ROM when both this bit and the
					"Memory Space" bit in the CFGCommand register
					are set.
110	reserved	1	×		0 = reserved
11M	Size Indication	1	×		These bits are read-only zero to indicate the region
					size.
N31	Expansion	1	1		These bits reset to zero and are loaded by software at
	ROM Base				boot time to set the base address of the Expansion
	Address				ROM where $N = (RomAddrSize + 16)$ and $M =$
					(N-1).

Notes: This register contains the Base Address of the Expansion ROM, in PCI memory space.

5.3.4 AGP (0x40 - 0x4B)

The AGP Capability, Status, and Control registers occupy three DWORDs starting at offset 40h.

The abbreviation *AgpCapable* is used to indicate the logical OR of the *Rate1XCapable*, *Rate2XCapable*, and *Rate4XCapable* fields in **CGIBusConfig**, and controls those PCI Fast Write and AGP capabilities which are independent of the data transfer rate.

3D labs Proprietary and Confidential 5-19

CFGAGPCapID

Name	Туре	Offset	Format
CFGAGPCapID	Configuration	0x40	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Capability ID	1	×	× see Configured by AGP Capable	
				desc.	0x02 when AGP Capable = 1 (AGP Capability ID)

Notes: This register specifies whether the device has AGP capability. The reset value is loaded by the **CFGBusConfig** AGP <u>Rate Capability</u> fields where *Capable* is the logical OR of the three fields.

CFGAGPNextPtr

Name	Туре	Offset	Format
CFGAGPNextPtr	Configuration	0x41	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Capability ID	1	×	0x00	Pointer to Next Capability
					00h = no further capabilities in list

Notes: The AGP Pointer to Next Capability register points to the next capability in the list.

CFGAGPRevision

Name	Туре	Offset	Format
CFGAGPRevision	Configuration	0x42	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
03	Rate	1	×	See Notes	= 00h when AgpCapable is 1 (Minor Rev 0)
47	Major Rev	✓	×	See Notes	= 00h when AgpCapable is 0 = 02h when AgpCapable is 1

Notes: The AGP Revision register specifies the revision of the the AGP spec the device is built to.

The reset value is configured in **CFGBusConfig**

5-20 Proprietary and Confidential **3D**/a

CFGAGPStatus

Name	Туре	Offset	Format
CFGAGPStatus	Configuration	0x44	Integer

Control register

Bits	Name	Read	Write	Reset	Description	
02	Rate	1	×	See Notes	Bit map indicating data transfer rates supported by this device. Bit 0 = value of Rate1 XCapable (1X transfers supported) Bit 1 = value of Rate2 XCapable (2X transfers supported) Bit 2 = value of Rate4 XCapable (4X transfers supported)	
3	Reserved	1	×		0 = reserved	
4	FastWrite	1	×	See Notes	If set, this device supports Fast Write transactions. = 0 when AgpCapable is 0 = value of PeiFWCapable when AgpCapable is 1	
5	4G	1	×	See Notes	If set, this device supports addresses greater than 4GB.	
68	Reserved	1	×		0 = reserved	
9	SBA	1	×	See Notes	If set, this device supports sideband addressing. = 0 when AgpCapable is 0 = value of SbaCapable when AgpCapable is 1	
1023	Reserved	1	×		0 = reserved	
2431	RQ	✓	×		Maximum number of AGP requests this device can manage. = 00h when Agp Capable is 0 = 1Fh when Agp Capable is 1 (32 outstanding requests)	

Notes: The **AGPStatus** register describes which AGP features are supported by the device. It is a read-only register, and will always read back as zero when <u>AgpCapable</u> is not set in **CFGBusConfig**.

3 D*labs*

P9/P10Reference Guide Volume II

CFGAGPCommand

Name	Туре	Offset	Format
CFGAGPCommand	Configuration	0x48	Integer

Command register

Bits	Name	Read	Write	Reset	Description
02	DATA_RATE	1	/		One (and only one) bit in this field must be set to indicate the desired data transfer rate. The same bit must be set on both master and target. Setting no bits or more than one but should disable AGP mastering. Setting this field to a value not supported in the CFGAGPStatus register should also disable AGP bus master operation. 1 = 1X transfer rate 2 = 2X transfer rate 4 = 4X transfer rate
3	Reserved	1	X		0=reserved
4	FW_ENABLE	1	1		0 = use standard PCI protocol to receive memory space writes 1 = use PCI Fast Write protocol to receive memory space writes
5	4G_ENABLE	1	1		4G_ENABLE 0 = the AGP master must only generate 32-bit addresses 1 = enable AGP master addressing above 4G boundary
6, 7	Reserved	1	×		0=reserved
8	AGP_ ENABLE	1	1		0 = disable AGP master operation 1 = enable AGP master operation
9	SBA_ENABLE	√	1		0 = disable Sideband Address mechanism 1 = enable Sideband Address mechanism If SBA is not set in the CFGAGPStatus register but SBA_ENABLE is set in this register, then the AGP bus master should be disabled.
1023	Reserved	1	×		0 = reserved
2431	RQ_DEPTH	1	1		The value in this field should never exceed the value of RQ from the CFGAGPStatus register. The maximum queue depth used internally is the lower of RQ and RQ_DEPTH fields in case this field has been programmed incorrectly.

Notes: The **AGPCommand** register is programmed by operating system software to enable AGP operation and select which data rate and features to use. If <u>AgpCapable</u> is not set all writes to this register are discarded and the entire register should read back as zero.

5.3.5 Power Management

The power management registers support power states D0, D1, and D3. When a PCI function within the device is in any power state other than D0, decoding of slave I/O and memory accesses and the initiation of bus master transactions should be disabled for that function only. This is the equivalent of the I/O Space, Memory Space, and Bus Master bits in the **CFGCommand** register for that function being unset.

5-22 Proprietary and Confidential **3D**/a

Configuration Space accesses must be decoded at all times, regardless of the power state. These requirements conform to Version 1.1 of the *PCI Power Management Specification*.

CFGPMCapID

Name	Туре	Offset	Format	
CFGPMCapID	Configuration	0x4C	Integer	
	Control register	•		

Bits	Name	Read	Write	Reset	Description
07	Capability ID	✓	×	see desc.	01h = Power Management Capability

Notes: The PM Capability ID register specifies that the device has Power Management Capability.

CFGPMNextPtr

Name	Туре	Offset	Format	
CFGPMNextPtr	Configuration	0x4D	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07		1	×	See Notes	Pointer to Next Capability = 00h when Agp Capable is 0 (no more capabilities in list) = 40h when Agp Capable is 1 (pointer to AGP Capability)

Notes: The PM Pointer to Next Capability register points to the next capability in the list. Reset is configured in the **CFGBusConfig** <u>AGP Capability</u> fields. (The abbreviation *AgpCapable* is used to indicate the logical OR of the *Rate1XCapable*, *Rate2XCapable*, and *Rate4XCapable* fields in **CGIBusConfig**, and controls those PCI Fast Write and AGP capabilities which are independent of the data transfer rate.)

3Dlabs Proprietary and Confidential

CFGPMC

Name	Туре	Offset	Format
CFGPMC	Configuration	0x4E	Integer

Control register

Bits	Name	Read	Write	Reset	Description
02	Version	1	×	0x222	010b = complies with Rev 1.1 of the PCI Power
					Management Interface spec
3	PME Clock	1	×		0 = PME# is not supported in any state
4	Reserved	1	×		0 = reserved
5	DSI	1	×		1 = this device requires special initialization
					following transition to D0 uninitialized state
68	Reserved	1	×		0 = reserved
9	D1_Support	1	×		1 = D1 power state is supported
10	D2_Support	1	×		0 = D2 power state is not supported
1115	PME_Support	1	×		0 = PME# signal is not asserted in any power state

Notes: The Power Management Capabilities (PMC) register.

CFGPMCSR

Name	Туре	Offset	Format
CFGPMCSR	Configuration	0x50	Integer

Control register

Bits	Name	Read	Write	Reset	Description
0,1	PowerState	1	1		0 = D0
					1 = D1
					3 = D3(hot)
					Valid states are 0, 1 and 3
27	Reserved	1	×		
8	PME_En	1	×		0 = PME# signal is not asserted in D3(cold)
129	Data_Select	1	×		0 = Data register not supported
14,13	Data_Scale	1	×		0 = Data register not supported
15	PME_Status	1	×		0 = PME# signal is not asserted in D3 (cold)

Notes: The Power Management Control/Status (PMCSR) register. If the value 2 is written to *PowerState* the write is discarded (power state D2 is not supported). When no PCI functions within the device are in the D0 power state the internal "ConfLowPower" control signal is asserted, and this is used to disable the generation of interupts and reduce the power consumption of the device.

5-24 Proprietary and Confidential **3D**/a

CFGPMCSR BSE

Name	Type	Offset	Format
CFGPMCSR_BSE	Configuration	0x52	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Bridgesupport	1	×		00h = this device is not a PCI-to-PCI bridge

Notes: This register specifies the Power Management PCI-to-PCI bridge support

CFGPMData

Name	Туре	Offset	Format
CFGPMData	Configuration	0x53	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	PowerMgmt	1	×	0xx00	00h = this register is reserved but not implemented
	Data				

Notes: This register implements the optional Power Management Data register

5.4 Multi-function registers

P9/P10 can be configured to operate as a multi-function device to support multi-head displays. The device includes the required PCI Configuration Space registers for **two** functions to match the number of video heads provided.

The user-defined <u>CFGFunConfig</u> register controls how the PCI is configured for multi-function operation. This register cannot be changed dynamically from software, but instead is loaded from external ROM after a hard reset. The value of the *MaxFunction* field is one bit wide in this implementation.

Previous sections of this document have described the Configuration Space registers as they appear in **function zero**. This section lists the differences between other functions and function zero, and how their registers interact to control the operation of each individual function and the device as a whole.

Note: Registers which are used to report status and capabilities have the same value in all functions and are not duplicated here.

5.4.1 Predefined Registers (Multi-function, function > zero)

See the function zero definitions (above) for predefined registers not listed here.

3D*labs* Proprietary and Confidential

CFGDeviceID [function > zero]

Name	Туре	Offset	Format
CFG DeviceID	Configuration	0x02	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
015	DeviceID	✓	×	0x0024 See Notes	P9 = 0024h when MultiUniqDevId is 0 and AltDeviceId is 0
0.15	DeviceID	✓	×	0x0020 See Notes	[P10] = 0020h when MultiUniqDevId is 0 and AltDeviceId is 0 (P9/P10 device) = 0021h when MultiUniqDevId is 1 and AltDeviceId is 0 (alternative) = 0022h when MultiUniqDevId is 0 and AltDeviceId is 1 (alternative) = 0023h when MultiUniqDevId is 1 and AltDeviceId is 1 (alternative)
1631	Reserved	×	×		

Notes: The DeviceID register contains the device identification number. The same Device ID is normally used for all functions, although a bit is provided in the CFGFunConfig register to give every function a unique Device ID (which is formed by adding the function number to the "standard" Device ID).

CFGClassCode[BaseClass] [function > zero]

The reset value may also be loaded from ROM]

Name	Туре	Offset	Format
CFGClassCode[BaseClass]	Configuration	0x0B	Bitfield
	Control register		

	Bits	Name	Read	Write	Reset	Description
0.	.7	BaseClass	>	×	configured	Upper byte of ClassCode register, classifies function type

Notes: The ClassCode register is read-only, and is used to identify the generic function of the device (see CFGClassCode table for definition). The register is best viewed as three byte-sized sub-registers including Subclass and Interfaceclass. The reset value is determined by CFGBusConfig.

Only function zero supports VGA operation so VgaEnable and VgaFixed are always assumed to be zero when generating the Class Code for any other function. This limits the available Class Codes to 3D controller or "other" display controller for functions other than zero.

5-26 Proprietary and Confidential **3D**/a

CFGCommand [function > zero]

Each function has its own **CFGCommand** register, which controls the ability of that function to generate and respond to PCI bus cycles. When a zero is written to this register, the relevant function is logically disconnected from the bus for all accesses except configuration accesses.

Slave address decoding can therefore be disabled on a per-function basis by writing to the individual **CFGCommand** register for each function. However, all the functions share a common PCI Master unit and in some circumstances it is possible for bus mastering to be disabled for only one function. In this situation the bus master must continue to operate, and only be disabled when the Bus Master field has been cleared in the CFGCommand register for *every* function.

Only function zero is permitted to support VGA operation if enabled by the **CFGBusConfig** register. When VGA operation is enabled then the standard fixed VGA I/O and Memory Space addresses are decoded through function zero, and the slave response to these addresses is enabled and disabled by the **CFGCommand** register in that function. The **CFGCommand** registers in functions other than zero have no effect on VGA operation, and their I/O Space and VGA Palette Snoop fields are zero.

3D*labs*

P9/P10Reference Guide Volume II

CFGCommand

Hardware Registers

Name	Туре	Offset	Format
CFGCommand	Configuration	0x04	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description	
0	I/O Space	1	×	0x0000	0 = disable I/O space accesses	
	, 1				1 = enable I/O space accesses	
					If VgaEnable and VgaFixed in the	
					CFGBusConfig register are not both set,	
					then fixed VGA addressing will be disabled	
					and this bit will be zero (read only).	
1	Memory Space	1	×		0 = disable memory space accesses for this	
	, 1				function	
					1 = enable memory space accesses for this	
					function	
2	Bus Master	1	×		0 = disable master accesses for this function	
					1 = enable master accesses for this function	
3	Special Cycles	1	×		0 = this device never responds to special	
					cycle accesses	
4	Memory Write	1	×		0 = "Memory Write and Invalidate" is never	
	and Invalidate				generated	
	Enable					
5	VGA Palette	1	×		0 = this function does not support VGA	
	Snoop				operation	
6	Parity Error	1	×		0 = this device does not support parity	
	Response				error reporting	
7	Address/Data	1	×		0 = this device does not perform	
	Stepping				address/data stepping	
8	SERR# Enable	1	×		0 = this device does not support parity	
					error reporting	
9	Fast Back-to-	1	×		0 = this device does not perform fast back-	
	Back Enable				to-back accesses	
1015	Reserved	1	×		0 = reserved	

Notes:			

5-28 Proprietary and Confidential **3D***la*

P9/P10 Reference Guide Volume II Hardware Registers

CFGStatus [function > zero]

See the function zero definition.

In a single-function device the Received Target Abort and Received Master Abort bits are set in the **CFGStatus** register following the abort condition regardless of whether the bus master is enabled in **CFGCommand**

In a *multi-function device* all the functions in the device share a single PCI Master so the relevant abort bits are set in the **CFGStatus** register of *every* function where bus master operation is enabled in its **CFGComand**.

CFGLatencyTimer [function > zero]

See the function zero definition.

Each function has its own copy of the **CFGLatencyTimer** register. During multi-function operation the shared PCI Master uses the highest latency timer count from all functions with an enabled bus master.

CFGInterruptLine [function > zero]

See the function zero definition.

Each function has its own copy of the **CFGInterruptLine** register. When *MultiShareIntLine* = one then writing to **CFGInterruptLine** for any function will update this register for all functions, otherwise only the register for the function actually written is affected.

The registers in the Interrupt Controller are shared between all functions, and can be accessed through Region Zero which is always visible for each function. Any head-specific interrupts such as vertical blank must have a bit per head provided in the appropriate registers in the Interrupt Controller.

5.4.2 Base Address Registers (Multi-function, function > zero)

Each function has its own set of Base Address Registers. The 256 KByte Region Zero is always mapped in for every function. Configuration bits are provided in CFGFunConfig to disable the BARs for Regions One and Two in all functions other than zero, which may be useful to reduce the total bus address space consumed by multi-function configurations where both memory apertures do not need to be visible for every function.

CFGBaseAddr0 [function > zero]

See function zero definition.

This register always has the same format in all functions as **CFGBaseAddr0** in function zero. All slave accesses to Region Zero of any function are mapped through the bus interface to the same underlying "Region Zero" hardware in the device, regardless of which function is actually addressed.

CFGBaseAddr1 [function > zero]

See <u>function zero</u> definition.

When MultiBar1Enable = 0 this register is Zero and Read Only for functions other than zero.

When <u>MultiBar1Enable</u> = 1 this register has the same format in all functions as **CFGBaseAddr1** in function zero. All slave accesses to Region One of any function are mapped through the bus interface to the same underlying "Region One" hardware in the device, regardless of the function addressed.

CFGBaseAddr2 [function > zero]

See function zero definition.

When MultiBar2Enable=0 this register is Zero and Read Only for functions other than zero.

When <u>MultiBar2Enable</u>=1 this register has the same format in all functions as CFGBaseAddr2 in function zero. All slave accesses to Region Two of any function are mapped through the bus interface to the same underlying "Region Two" hardware in the device, regardless of the function addressed.

3D labs Proprietary and Confidential 5-29

Hardware Registers P9/P10Reference Guide Volume II

CFGRomAddr [function > zero]

The Expansion ROM Base Address Register can only be accessed through function zero, and is always *Zero and Read Only* for all other functions.

5.4.3 AGP Registers (Multi-function, function > zero)

Function zero supports AGP operation when enabled by the <u>AgpCapable</u> registers in **CFGBusConfig**. Although not required by the *AGP Interface Specification* it is not impossible that some system software will look at the configuration space of a device and decide whether or not to allocate system resources based on its AGP capabilities. (For example, DirectDraw might decide that GART-based DMA services are not

its AGP capabilities. (For example, DirectDraw might decide that GART-based DMA services are not available to function One if it indicates that it is not AGP capable.) For this reason there are configuration bits in **CFGFunConfig** to make AGP registers <u>visible</u> in functions other than zero, and to configure whether the **CFGAGPCommand** register should be <u>shared</u> between all functions.

When MultiAgpCapable is zero all the AGP registers (CFGAgpCapId, CFGAGPNextPtr.

CFGAGPRevision, **CFGAGPStatus**, and **CFGAGPCommand**) are *Zero and Read Only* for functions other than zero. When both **AgpCapable** and **MultiAgpCapable** = 1 then these registers are visible in all functions. Details of AGP registers not listed here can be found in the earlier function zero definitions.

CFGAGPCommand [function > zero]

See function zero definition.

Each function has its own copy of the CFGAGPCommand register. When **MultiShareAgpCmd** and **MultiAgpCapable** are both one then writing to the CFGAGPCommand register for any given function will update this register for all functions, otherwise only the register for the function actually written will be affected.

Note:

Regardless of how the other functions in a multi-function device are configured, the operation and mode of the AGP Master is only affected by the **CFGAGPCommand** register in function zero.

5.4.4 Power Management Registers (Multi-function, function > zero)

All functions share the common PCI and AGP Bus Master units. These will only be disabled as a result of power management when there are no functions remaining in the D0 power state. The power state of the entire device reflects the power state of all functions. For example, if function zero is in power state D3 and function one is in power state D1 then the device is in power state D1.

See the earlier function zero definitions for Power Management registers not listed here.

CFGPMNextPtr [function > zero]

See function zero definition.

When MultiAgpCapable is zero this register Zero and Read Only for functions other than zero.

CFGPMCSR [function > zero]

See function zero definition.

Each function has its own copy of the **CFGPMCSR** register, and power states D0, D1, and D3 are *supported* separately for each function.

Putting a function into a power state other than D0 disables slave address decoding, bus mastering, and interrupt generation for that function only. Other functions still in power state D0 may continue to respond to slave accesses and generate interrupts and bus master transactions. Configuration accesses must be decoded at all times, regardless of power state.

5.5 Indirect PCI Space Access to Regions 0 – 3 and ROM

The **IndirectData**, **IndirectAddress**, and **IndirectTrigger** registers are used to access Regions Zero, One, Two, and the ROM region indirectly through PCI Configuration Space.

The region to be accessed and the offset into the region are programmed into the **IndirectAddress** register. Write data is loaded into the **IndirectData** register, and is written to the location pointed to by the **IndirectAddress** register when the **IndirectTrigger** register is written.

5-30 Proprietary and Confidential **3D**/a

P9/P10 Reference Guide Volume II Hardware Registers

Reading the **IndirectTrigger** register returns the value at the location pointed to by the **IndirectAddress** register. The byte enables used for the internal read or write operation are taken from the actual bus transaction to the **IndirectTrigger** register.

Each of these three user-defined registers is shared between all functions in a multi-function device, and accesses through any function are mapped to the same underlying register hardware by the bus interface. A similar approach is used for VGA I/O Space. Examples are shown in Appendix 2, below.

CFGIndirectData

Name	Туре	Offset	Format
CFGIndirectData	Configuration	0xF4	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
031	IndirectData	1	✓	0x000 00000	

Notes: The **IndirectData** register is used to hold write data for indirect transfers using PCI Configuration Space. See the description above for details of how this register should be used.

CFGIndirectAddress

Name	Туре	Offset	Format
CFGIndirectAddress	Configuration	0xF8	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
028	AddressOffset	1	1	0x000	
				0,0000	
2931	RegionSelect				0 = select Region 0
					1 = select Region 1
					2 = select Region 2
					3 = reserved
					4 = reserved
					5 = reserved
					6 = reserved
					7 = select ROM region
					Reserved values can be written to and read from this
					register, but will result in indirect writes being
					discarded and indirect reads returning zero.

Notes: The **IndirectAddress** register is used to hold the region to be accessed for indirect transfers using PCI Configuration Space, and the address offset within that region. See the text above for details of how this register should be used.

3Dlabs Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

CFGIndirectTrigger

Name	Туре	Offset	Format	
CFG IndirectTrigger	Configuration	0xFC	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
031	Indirect Trigger	1	1	0x000	
				0,0000	

Notes: The **IndirectTrigger** register is used to trigger indirect accesses to the device using PCI Configuration Space. See the text above for details of how this register should be used.

5.6 Region 0 Reserved Registers (0x09000 – 0x0EFFF and 0x29000 – 0x2EFFF)

All accesses to reserved sub-regions in the table above are intercepted and handled by the bus interface: writes are discarded, and reads return zero. Accesses to non-reserved sections of the address map are forwarded to the appropriate target unit.

The bus interface has no information about the internal register map of individual target units, so where target units have a sparse register map they themselves are responsible for handling accesses to reserved registers. By convention, they too should absorb writes and read back zero from reserved addresses.

5.7 Region 0 Control Registers (0x0000-0x01FF)

Region Zero is a 256 KByte region containing control registers and ports to and from the graphics processor. The control space is mapped in two 128K ranges: in the second 128K the registers are mapped to be byte swappable for Big Endian hosts. See the *P9/P10 Reference Guide* volume I for further details of Region Zero.

The bus interface has its own internal set of CSR registers, which are described in detail in the PCI CSR Unit Specification. They include Reset, Power Management, and Bus Master control registers, but in a departure from previous 3Dlabs designs the interrupt and error registers now reside in a separate Interrupt Control unit which allows a much more generic and re-usable implementation of the bus interface CSR registers.

5.7.1 Bus Interface CSR (0x00000 – 0x00FFF)

ResetStatus

Name	Туре	Offset	Format
ResetStatus	Bus Interface	0x00	Integer

Control register

Bits	Name	Read	Write	Reset	Description
030	Reserved	1	×		0=reserved
31	Indirect Trigger	1	1	0x000	Software Reset Flag
				00000	0 = graphics processor is ready for use
					1 = graphics process is being reset and must not be
					used

Notes: Writing to this register resets the graphics processor software. It does **not** reset the bus interface. The reset takes a number of cycles to complete during which the graphics processor should not be used. A flag in the register shows that the software reset is still in progress.

Note: All PCI CSR registers are reset by this software reset unless explicitly stated otherwise.

5-32 Proprietary and Confidential **3D**/a

P9/P10 Reference Guide Volume II Hardware Registers

PowerManagement

Name	Туре	Offset	Format
PowerManagement	Bus Interface	0x08	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
0	SlavePM	1	1		0 = respond to slave accesses in all power states
	Enable				1 = respond to slave accesses only in State D0
1	MasterPM	✓	✓		0 = allow bus masters to access the bus in all power
	Enable				states
					1 = allow bus masters to access the bus only in State
					D0
2	InterruptPM	1	1		0 = allow INTA# to be asserted in all power states
	Enable				1 = allow INTA# to be asserted only in State D0
3	InterruptGate	1	1		0 = de-assert the INTA# output on entering low-
	Mode				power mode
					1 = allow INTA# to remain asserted during low-
					power mode if it was already asserted before entering
					low-power mode
431	Reserved	1	×		0=reserved

Notes: This register controls the behaviour of the bus interface in power states other than the D0 state.

ApertureOne ApertureTwo

Name	Туре	Offset	Format
ApertureOne	Region Zero	0x10	Bitfield
ApertureTwo	Region Zero	0x18	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0.1	An antrana Mada	,		0	0 = aggest the least speem out discoults
0, 1	ApertureMode	•	•	0	0 = access the local memory directly 1 = access the memory through the VGA subsystem
					2 = use this aperture to access the Expansion ROM
					3 = reserved (access the local memory directly)
0.21	D 1			0	3 – leserved (access the local memory directly)
231	Reserved	✓	X	U	

Notes: Two memory apertures are provided, each being a PCI region with a configured size (see CFGBusConfig). The **ApertureOne** and **ApertureTwo** registers allow the Apertures to be used to access the VGA or ROM instead of the memory controller. When the VGAAccess bit in either of the **ApertureOne** or **ApertureTwo** registers is set, then all accesses to the relevant aperture are forwarded to the VGA Unit rather than directly to the memory controller. Writing a "reserved" value to this register configures the aperture to access the memory directly, but this may change in future implementations.

3D*labs* Proprietary and Confidential 5-33

BusErrorFlags

Name	Type	Offset	Format
BusErrorFlags	Region Zero	0x20	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Soft Reset Access Error	1	✓ ③	0	0 = no error 1 = Graphics Core / Memory / VGA access discarded during Soft Reset
1	Completion Discard Error	1	✓ 🏵	0	0 = no error 1 = Delayed Completion discarded after master failed to repeat request
2	VGA Snoop Failure Error	1	✓ ③	0	0 = no error 1 = VGA Snoop failed as no buffer space available to receive the data
3	Target Abort Error	1	✓ ③	0	0 = no error 1 = PCI Master transaction terminated by Target Abort
4	Master Abort Error	1	✓ ⑧	0	0 = no error 1 = PCI Master transaction terminated by Master Abort
531	Reserved	1	×	0	

Notes: The Bus Error Flags register shows which errors are outstanding in the bus interface. Flag bits are reset by writing to this register with the corresponding bit set to a one. Flags at positions where the bits are set to zero will be unaffected by the write.

BusErrorEnable

Name	Type	Offset	Format
ResetStatus	Region Zero	0x028	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Soft Reset	1	1		0 = disable
	Access Enable				1 = enable bus error generation
1	Completion	1	1		0 = disable
	Discard Enable				1 = enable bus error generation
2	VGA Snoop	1	1		0 = disable
	Failure Enable				1 = enable bus error generation
3	Target Abort	1	1		0 = disable
	Enable				1 = enable bus error generation
4	Master Abort	1	1		0 = disable
	Enable				1 = enable bus error generation
531	Reserved	1	×		0=reserved

Notes: The BusErrorEnable register selects which error conditions are allowed to generate a Bus Error interrupt signal to the Interrupt Controller Unit.

5-34 Proprietary and Confidential **3D**/a

PciMasterControl

Name	Туре	Offset	Format
PciMasterControl	Region Zero	0x030	Integer

Control register

Bits	Name	Read	Write	Reset	Description
0	RdConcat	1	1	0x000	0 = do not attempt to concatenate read requests
	Enable			00003	1 = concatenate adjacent read bursts on the bus
1	WrConcat	1	1		0 = do not attempt to concatenate write requests
	Enable				1 = concatenate adjacent write bursts on the bus
231	Reserved (Read	1	×		0=reserved
	Only)				

Notes: The PciMasterControl register is used to control the behaviour of the PCI Master. This register is not affected by the software reset caused by writing to the **ResetStatus** register

PciAbortStatus

Name	Туре	Offset	Format
PciAbortStatus	Region Zero	0x038	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	Ident	1	1	0x000	The identity of the DMA source which caused the
				00000	Abort This field is only valid when the Status field is
					not zero.
					0 = Interrupt Controller
					1 = GPIO Upload Unit
					2 = Memory Controller
229	Reserved	1	×		0=reserved
3031	Status	1	1		0 = no transactions terminated by Abort
					1 = Write transaction terminated by Abort
					2 = Read transaction terminated by Abort

Notes: **PciAbortStatus** reports whether an operation initiated by the PCI Master in this device has been terminated with an abort on the bus. Only details of the first such abort are recorded, and are not overwritten by subsequent aborts until **PciAbortStatus** has been cleared. Writing any value to the **PciAbortStatus** register will clear it together with the **PciAbortAddrLo** and **PciAbortAddrHi** registers.

3D labs

PciAbortAddrLo

Name	Type	Offset	Format
PciAbortAddrLo	Region Zero	0x040	Integer

Control register

Bits	Name	Read	Write	Reset	Description
031	AbortAddrLo	1	1	0x000 00000	Lower 32 address bits of aborted transaction. The contents of this register are only valid when the PciAbortStatus Status bit reports a read or write abort

Notes: This register records the lower 32 bits of the bus address which caused the abort recorded in the **PciAbortStatus** register's *Status* bit. Writing any value to **PciAbortStatus** clears the **PciAbortAddrLo** register

PciAbortAddrHi

Name		Type	Offset	Format
PciAbortA	AddrHi	Region Zero	0x048	Bitfield
		Control register		

Bits	Name	Read	Write	Reset	Description
031	AbortAddrHi	1	1	0x000 00000	Higher 32 address bits of aborted transaction. The contents of this register are only valid when
					"PciAbortStatus Status" reports a read or write abort

Notes: This register records the higher 32 bits of the bus address which caused the abort recorded in **PciAbortStatus** register's *Status* bit. Writing any value to **PciAbortStatus** clears this register

5-36 Proprietary and Confidential **3D**/a

AgpMasterControl

Name	Туре	Offset	Format
AgpMasterControl	Region Zero	0x050	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	GntDisable	1	1	0x000 00003	0 = allow AGP Master to generate REQ# and receive GNT#s normally 1 = connect PCI Master directly to REQ# and
					GNT# (for debug only)
1	ReadThrottle	1	✓		0 = use the RBF# pin to throttle start of low-priority read data transfers 1 = only request read data when space to receive it (RBF# never asserted)
2,3	RdBurstSize	1	1		Length of requested AGP Read transactions. All longer requests from DMA sources are broken up into a series of transactions of this length. 0 = 16 bytes (2 QuadWords) 1 = 32 bytes (4 QuadWords) 2 = 48 bytes (6 QuadWords) 3 = 64 bytes (8 QuadWords)
4,5	WrBurstSize	1	1		Length of requested AGP Write transactions. All longer requests from DMA sources are broken up into a series of transactions of this length. 0 = 16 bytes (2 QuadWords) 1 = 32 bytes (4 QuadWords) 2 = 48 bytes (6 QuadWords) 3 = 64 bytes (8 QuadWords)
631	Reserved	1	X		0=reserved

Notes: This register is used to set up the behaviour of the AGP Master. It will normally be programmed during device initialisation and should not be modified during runtime operation unless the AGP Master is idle and there are no outstanding AGP Read or AGP Write requests to the target

3D labs

PciPLLControl

Name	Туре	Offset	Format
PciPLLControl	Region Zero	0x058	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	PciPLLSetup	1	1	0x800 0000F	7h = standard setup [reset value]
3	PciPLLEnable	1	1		1 = enabled [reset value]
430	Reserved [P10]	√	×		0=reserved
429	Reserved [P9]	√	×		0=reserved
<mark>30</mark>	PciPLLDrop	√	✓	x	0 = lock maintained
					1 = lock dropped
31	PciPLLLock	1	×		0 = not locked
					1 = locked

Notes: The **PciPLLControl** register is used to control the PLL which multiplies the incoming 15ns **CLK** signal from the bus to generate an internal 266MHz clock (this is required to transmit data and sideband addresses in AGP 2X and 4X transfer modes). The top register bit reports the PLL status. This register is not affected by the software reset caused by writing to the **ResetStatus** register

AgpAutoCalCount

Name	Туре	Offset	Format
AgpAutoCalCount	Region Zero	0x060	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
011	AutoCal Count	1	×	0x000 00FFF	FFFh = minimum count value
1231	AutoCalCount	1	1		

Notes: The AgpAutoCalCount register controls the number of bus clocks between automatic calibrations of the output drivers for the **SBA[7::0]**, **AD[31::00]** and **C/BE[3::0]** bus interface pins while operating in AGP 4X transfer mode. The bottom 12 bits of this register are always set, ensuring a sensible minimum interval between calibration operations.

This register is not affected by the software reset caused by writing to the ResetStatus register

5-38 Proprietary and Confidential **3D**/a

AgpDriveStrength

Name	Туре	Offset	Format
AgpAutoCalCount	Region Zero	0x068	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	AutoCal Count	1	1	0x000 00000	SbDriveStrength: Programmed drive strength for SBA[7::0] outputs.
3	SbDriveSelect	1	1		Select SBA[7::0] output buffer drive strength. 0 = use automatically measured drive strength. 1 = use programmed value of SbDriveStrength. Bits 2-0
46	AdDrive Strength	1	1		Programmed drive strength for AD[31::00] and C/BE[3::0] outputs.
7	Ad DriveSelect	1	√		Select AD[31::00] and C/BE[3::0] output buffer drive strength. 0 = use automatically measured drive strength 1 = use programmed value of AdDriveStrength
810	ZsDriveStrengt h (Rea d Only)	1	×		Automatically measured drive strength for AGPZSET pin. The value of this field may change over time, as a result of changes in the device operating environment.
11	ZsDriveValid (Read Only)	1	×		0 = drive strength currently being updated 1 = ZsDriveStrength register field is valid
1231	Reserved	1	×		

Notes: The AgpDriveStrength register is used to monitor the required bus interface output buffer drive strength, which is normally measured and updated automatically while operating in AGP 4X transfer mode. To assist with electrical debugging, the AgpDriveStrength register can also directly control the output drive strength of the bus interface pins regardless of the AGP transfer mode selected.

Note: This register is not affected by the software reset caused by writing to the ResetStatus register.

AgpCalibration

Name	Туре	Offset	Format	
AgpCalibration	Region Zero	0xF00-F7F	Integer	
	Control registe.	r		

Bits	Name	Read	Write	Reset	Description
031	Reserved	1	×	0x000 00000	0=reserved

Notes: This range of register offsets is reserved to receive dummy writes during automatic calibration of the output drivers for the AD[31::00] and C/BE[3::0] pins while operating in AGP 4X transfer mode. All data written to this address range is discarded, and all read operations return zero. This is the default behaviour for "reserved" registers and therefore does not require any special implementation

3D*labs* Proprietary and Confidential 5-39

P9/P10Reference Guide Volume II

CoreControl

Name	Туре	Offset	Format
CoreControl	Region Zero	0x070	Integer

Control register

Bits	Name	Read	Write	Reset	Description
05	GpMemory Disable	1	1	0x000 00000	Disable accesses from graphics core memory ports. See the P9/P10 Memory Pipe Specification for details
6	Context Disable	1	1	0x000 00000	0 = enable tag snooping in the Context Unit 1 = disable tag snooping and hence context saving
731	Reserved	1	×		0=reserved

Notes: The CoreControl register controls the operation of the Context and Memory Pipe units

5.7.1.1 PCI Router Status, Profiling and Manufacturing Registers

See Appendix 2 where provided

5.7.2 Interrupt Control (0x01000 – 0x01FFF) 4 K

The following registers are all 32 bits wide and aligned to 64 bits. Writes to undefined addresses are discarded, reads from undefined addresses return zero. Any register bits which are not explicitly defined should be treated as reserved and should not be modified by writes and return zero for reads. Interrupts work on arrays of interrupt signals. The implementation should match the individual interrupt signals to bit positions in the arrays through the following tables:

	Interrupts							
Bit	Bit Name	Signal Name	Description					
0	Command	GPIOCommIntrApi	Command interrupt					
1	IsocCommand	GPIOCommIntrIso	Command interrupt from					
			isochronous channel					
2	Sync	GPIOSyncIntrApi	Sync interrupt					
3	IsocSync	GPIOSyncIntrIso	Sync interrupt from isochronous					
			channel					
4	ContextTimeout	GPIOTimerIntr	Context scheduler timeout					
5	PageFault	MemoryAddressFaultInterrupt	Memory page fault					
6	PageDMA	MemoryPageDMACompleteInterrupt	Page controller DMA complete					
7	Error	ErrorInterrupt	Error, check flags for source					
8	External	ExternalInterrupt	From external pin					
9	VideoPort0	VPortFrameIntr0	Start of frame from video input					
			port					
10	VideoPort1	VPortFrameIntr1	Start of frame from video input					
			port					
11	VBlank0	VideoVBlank0	Vertical blank					
12	VBlank1	VideoVBlank1	Vertical blank					

The rest of P9/P10 does not distinguish between errors and interrupts, so in the *InterruptValid* array the errors follow on from the interrupts.

	Errors							
Bit	Bit Name	Signal Name	Description					
0	BusError	BusError	Error from PCI, check bus register for cause					
1	PixAddrTimeOut	PixAddrW atchdogInt	Watchdog timeout from pixel address unit					
2	TexTimeOut	TexWatchdogInt	Watchdog timeout from texture units					
3	IndexError0	GPIOIdxErr0	Index references invalid address					
4	IndexError0	GPIOIdxErr1	Index references invalid address					
5	IndexError0	GPIOIdxErr2	Index references invalid address					

5-40 Proprietary and Confidential **3D**/a

6	IndexError0	GPIOIdxErr3	Index references invalid address
7	IndexError0	GPIOldxErr4	Index references invalid address
8	IndexError0	GPIOldxErr5	Index references invalid address
9	IndexError0	GPIOldxErr6	Index references invalid address
10	IndexError0	GPIOldxErr7	Index references invalid address
11	IndexError0	GPIOldxErr8	Index references invalid address
12	IndexError0	GPIOldxErr9	Index references invalid address
13	IndexError0	GPIOldxErr10	Index references invalid address
14	IndexError0	GPIOldxErr11	Index references invalid address
15	IndexError0	GPIOldxErr12	Index references invalid address
16	IndexError0	GPIOldxErr13	Index references invalid address
17	IndexError0	GPIOldxErr14	Index references invalid address
18	IndexError0	GPIOldxErr15	Index references invalid address
19	VUnderflow0	VideoUnderflowError0	Video underflow from head 0
20	VUnderflow1	VideoUnderflowError1	Video underflow from head 1
21	ShdTimeOut	ShadUnitWDogIntr	Watchdog timeout for shading unit
22	PixVtgTimeOut	PixAddrVtgSyncIntr	Watchdog timeout for syncing on vtg
23	PixTimeOut	PixUnitW DogIntr	Watchdog timeout for pixel unit

ItcInterruptEnable

Name	Type	Offset	Format
ItcInterruptEnable	Region Zero	0x01000	Mask
<u>-</u>			

Control	register

Bits	Name	Read	Write	Reset	Description
031	Mask	✓	×	0000.0	Mask of internal signals that should cause a bus interrupt. See <u>above</u> for bit assignments

Notes:

ItcInterruptPending

Name	Type	Offset	Format
ItcInterruptPending	Region Zero	0x01008	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
029	Mask	1	1		Mask of internal signals that are asserted. Write 1 to each bit to be cleared. See <u>above</u> for bit assignments
30	Host	1	✓		Set to 1 to raise interrupt under software control
31	VGA	1	×		0=reserved

Notes:

3 D*labs* Proprietary and Confidential

ItcErrorEnable

Name	Туре	Offset	Format
ItcErrorEnable	Region Zero	0×01010	Mask

Control register

Bits	Name	Read	Write	Reset	Description
031	Mask	✓	1		Mask of internal signals that should cause a bus interrupt. See <u>above</u> for bit assignments

Notes:

ItcErrorPending

Name	Туре	Offset	Format
ItcErrorPending	Region Zero	0x01018	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
030	Mask	1	√	0x000 0.0000	Mask of internal signals that are asserted. Write 1 to each bit to be cleared. See <u>above</u> for bit assignments
31	Reserved	1	×		0=reserved

Notes:

ItcTrigger

Name	Туре	Offset	Format
ItcTrigger	Region Zero	0x01020	Mask

Control register

Bits	Name	Read	Write	Reset	Description
0	Valid	1	×		Set to 1 when register is written, cleared when program has executed
1	Program	1	1	0x000 0.0000	
231	Reserved				

Notes: A write to this register triggers the operation of a program (the value in the register specifies the program number to run

5-42 Proprietary and Confidential **3D***la*

5-43

ItcProgramControl0

Name	Туре	Offset	Format
	Region Zero	0x01040	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	SrcA	✓	1		0=0
					1 = Memory
1	SrcB	1	1		0=Mask
					1=Variable
2,3	Operation	1	1		0 = Add
					1 = Subtract
					2 = AND
					3 = OR
4	Dst	1	1		0 = Discard
					1 = Memory
58	Enables	1	1		0=reserved
915	Reserved	1	×		0=reserved
1631	Mask	1	1		0 = Mask
					1 = Variable

Notes: The value for *SrcA* can be set to zero or read from memory; the value for *SrcB* can be set to the mask of pending interrupts or a variable from a register. The operation is one of:

Dst = SrcA + SrcB

Dst = SrcA - SrcB

Dst = SrcA AND SrcB

Dst = SrcA OR SrcB

The destination value can be written to memory or discarded. All data values are 32 bits, but writes to memory use a specified byte enable mask.

ItcProgramAddrLow0

ItcProgramAddrLow0 Region Zero	0x01048	Bitfield	

Control register

Bits	Name	Read	Write	Reset	Description
01	Reserved	1	×	0x000 0.0000	Reserved
231	Address	1	×	0.0000	Address

Notes:

3D*labs* Proprietary and Confidential

ItcProgramAddrHigh0

Name	Туре	Offset	Format	
ItcProgramAddrHigh0	Region Zero	0×01050	Bitfield	

Control register

Bits	Name	Read	Write	Reset	Description
031	Address	1	1	0x000	
				0.0000	

Notes:

ItcProgramVariable0

Name	Туре	Offset	Format	
	Region Zero	0x01058	Bitfield	
	Control register			

Control register

Bits	Name	Read	Write	Reset	Description
031	Data	✓	✓	0x000 0.0000	Data

Notes:

5-44 Proprietary and Confidential **3D***la*

5-45

ItcProgramControl1

Name	Type	Offset	Format
	Region Zero	0x01060	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	SrcA	1	1	0x000	0=0
				0.0000	1 = Memory
1	SrcB	1	1		0=Mask
					1=Variable
2,3	Operation	1	✓		0 = Add
					1 = Subtract
					2 = AND
					3 = OR
4	Dst	1	✓		0 = Discard
					1 = Memory
58	Enables	1	1		Enables
915	Reserved	1	×		0=reserved
1631	Mask	1	1		0 = Mask
					1 = Variable

Notes: The value for *SrcA* can be set to zero or read from memory; the value for *SrcB* can be set to the mask of pending interrupts or a variable from a register. The operation is one of:

Dst = SrcA + SrcB

Dst = SrcA - SrcB

The destination value can be written to memory or discarded. All data values are 32 bits, but writes to memory use a specified byte enable mask.

ItcProgramAddrLow1

Name	Туре	Offset	Format	
ItcProgramAddrHigh0	Region Zero	0x01068	Bitfield	
	Control register			

Bits	Name	Read	Write	Reset	Description
01	Reserved	1	×		
131	Address	1	1	0x000	
				0.0000	

Notes:

3Dlabs Proprietary and Confidential

ItcProgramAddrHigh1

Name	Туре	Offset	Format
ItcProgramAddrHigh0	Region Zero	0×01070	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
031	Address	✓	1	0x000 0.0000	

Notes:

ItcProgramVariable1

Name	Type	Offset	Format
ItcProgramVariable1	Region Zero	0x01078	Bitfield
	a , ,		

Control register

Bits	Name	Read	Write	Reset	Description
031	Data	✓	✓	0x000 0.0000	Data

Notes:

5.7.3 Video Head 0 Control (0x02000 – 0x02FFF) (4Kb)

The Video Control implementation is described in the *P10 Reference Guide* volume 1. Each of the two video heads in the current P9/P10 implementation has its own 4K Byte control register space within Region Zero.

Unless explicitly noted, each register in this list is repeated for each head in the system. Any reserved fields in a register should read back as zero.

The implementation uses one DClk process for each head in the system, but one PClk process for all heads. The PClk process holds the register read/write controls and must route the accesses to the appropriate head; the head number is used explicitly in the code. Each DClk process handles the pixel processing, and as there is an indentical set of processes for each head the head number is not used explcitly. An access to a register just references that register, and does not specify which head it belongs to. If the head number needs to be referenced directly the symbol # is used which should be replaced the number of that particular head; this is mainly needed in code controlling shared resources such as pins.

5.7.3.1 Direct Access Registers

The following registers are accessed directly by reading or writing the defined address.

ote: Unlike other registers, Video Control registers are all 8 bytes wide and set on 8 byte boundaries in the PCI address range. When accessed from the VGA they are packed on byte boundaries.

5-46 Proprietary and Confidential **3D**/a

5-47

VideoPaletteWriteAddress

Name	Type	Offset	Format	
ItcErrorEnable	Region Zero	0x02000	Address	

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0x000 0.0000	

Notes:

VideoPaletteData

Name	Туре	Offset	Format
VideoPaletteData	Region Zero	0x02008	Int
	0 . 1		

Control register

Bits	Name	Read	Write	Reset	Description
07	Data	1	1	0xXX XX.X	Data
				XXX	

Notes: If the color resolution is 6 bits, bits 7 and 6 are returned as zero for reads and ignored for writes. In this mode, bits 5 to 0 are read from, or written to, bits 7 to 2 of the palette. Autoincrements VideoPaletteReadAddress and VideoPaletteWriteAddress

VideoPixelMask

Name	Туре	Offset	Format
VideoPixelMask	Region Zero	0x02010	Mask

Control register

Bits	Name	Read	Write	Reset	Description
07	Mask	1	1	0xXX	Mask
				XX.X	
				XXX	

Notes: The contents of this register is ANDed with the index into the color palette. The same mask is applied seperately to red, green, and blue components. It is only applied to LUT0

3 D*labs*

VideoPaletteReadAddress

Name	Type	Offset	Format
VideoPaletteReadAddress	Region Zero	0x02018	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: The index of the palette entry to be read is written to this register. If this register is read, its operation is determined by the state of the LastReadAddress bit in the VideoControl0 register.

LastReadAddress = 0 register returns mode of last access to palette, 0 = write, 3 = read.

LastReadAddress = 1, register returns palette read address

VideoIndexLow

Name	Туре	Offset	Format
VideoIndexLow	Region Zero	0x02020	Int

Control register

Bits	Name	Read	Write	Reset	Description
07	Index	✓	1	0xXX XX.X	Index

Notes: This register, with **VideoIndexHigh**, selects the register that will be accessed when the VideoIndexData register is written or read

VideoIndexHigh

Name	Туре	Offset	Format
VideoIndexHigh	Region Zero	0x02028	Int

Control register

Bits	Name	Read	Write	Reset	Description
03	Index	√	√	0xXX XX.X XXX	Index

Notes: This register, with VideoIndexLow, selects the register that will be accessed when the VideoIndexData register is written or read

5-48 Proprietary and Confidential **3D**/a

VideoIndexedData

Name	Туре	Offset	Format
VideoIndexedData	Region Zero	0x02030	Int

Control register

Bits	Name	Read	Write	Reset	Description
07	Data	1	1	0xXX	
				XX.X	
				XXX	

Notes: A read or write to this register accesses the register pointed to by the **VideoIndex** register. Following a read or write to this register, the index is incremented if *AutoIncrement* is enabled in

VideoIndexControl

VideoIndexControl

Name	Туре	Offset	Format
Video IndexControl	Region Zero	0x02038	Bitfield

Control tegister

Bits	Name	Read	Write	Reset	Description
0	Auto Increment	1	1	0x000 0.0000	0 = Disabled 1 = Enabled
17	Reserved	✓	X		

Notes:

5.7.3.2 Indirect Access Registers

The following registers may be accessed indirectly by first loading the index into the **IndexLow** and **IndexHigh** registers, and then reading or writing the **VideoIndexedData** register. They may be accessed directly by forming a byte address from the index and accessing on 32 bit alignments (so 4 registers are read or written at a time, although byte enables are honoured for writes). They are packed together, any CPUs that cannot support byte writes should use the indirection register. The indices are not all consecutive.

3Dlabs Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

VideoUpdate

Name	Туре	Index	Format
VideoUpdate	Region Zero	0x40	Bitfield

Control tegister

Bits	Name	Read	Write	Reset	Description
0	Underlay Reg	✓	✓	0x000	0 = Update complete
	[P10]			0.0000	1 = Update pending
	Reserved [P9]	✓	×		Reserved [P9]
1	<u>Underlay</u>	✓	√	00000	0 = Update complete
_	Buffer [P10]			<mark>0.0000</mark>	1 = Update pending
	Reserved [P9]	✓	×		Reserved [P9]
2	MainReg	1	1	0x000	0 = Update complete
				0.0000	1 = Update pending
3	MainBuffer	1	1	0x000	0 = Update complete
				0.0000	1 = Update pending
4	OverlayReg	1	1	0x000	0 = Update complete
				0.0000	1 = Update pending
5	OverlayBuffer	1	1	0x000	0 = Update complete
				0.0000	1 = Update pending
<mark>6</mark>	<mark>CursorReg</mark>	✓	✓	000×0	0 = Update complete
	[P10]			<mark>0.0000</mark>	1 = Update pending
	Reserved [P9]	✓	×		Reserved [P9]
<mark>7</mark>	<mark>CursorBuffer</mark>	✓	✓		0 = Update complete
	[P10]				1 = Update pending
	Reserved [P9]	✓	×		Reserved [P9]

Notes: Set flag when registers have been modified; flag cleared when new values have been registered.

'Update complete' means that new data can be written into the registers, so for example when triple-buffered there is at least one space in the buffer 'queue'. See VideoBufferControl for information on buffer queueing.

5-50 Proprietary and Confidential **3D***la*

VideoControl0

Name	Туре	Index	Format
VideoControl0	Region Zero	0x41	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	LastRead	1	1	0x000	Controls data returned by read from
	Address			0.0000	VideoPaletteReadAddress register
					0 = Disabled (return palette access state).
					1 = Enabled (return last palette read address).
1	PixelScale	1	✓		0 = Disabled.
					1 = Enabled
2	LineScale	1	1		0 = Disabled
					1 = Enabled
3	RGB	1	1		0 = Color order = BGR.
					1 = Color order = RGB
4	Latency	1	~		1 = Set. Improves underrun control, should always
	,				be set
5	Priority	1	1		Sets memory requests to high priority
6,7	Reserved	1	×		

Notes:

VideoControl1

Name	Туре	Index	Format
VideoControl1	Region Zero	0x42	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	AccessLUT	1	✓	0x000	Controls which LUT is read/written [P10]
				0.1000	Must = 0 [P9]
1	ExtendLUT	1	✓		Linearly extend LUT data on load
2	Interlace	1	✓		
3	StereoFrame	1	×		Flag indicates which field is being displayed
4	MainStereo	1	1		0 = Disabled
					1 = Enabled
5	OverlayStereo	1	1		0 = Disabled
					1 = Enabled
6	InvertStereo	1	1		0 = Disabled
					1 = Enabled
7	Filter	1	1		0 = Disabled
					1 = Enabled

Notes:

3D*labs* Proprietary and Confidential

VideoBufferControl

Name	Туре	Index	Format
VideoBufferControl	Region Zero	0x43	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	Underlay	1	×		0 = SingleBuffer
					1 = DoubleBuffer
					2 = TripleBuffer
	Reserved [P9]	✓	×		Reserved [P9]
2,3	Main	1	×		0 = SingleBuffer
					1 = DoubleBuffer
					2 = TripleBuffer
4,5	Overlay	1	×		0 = SingleBuffer
					1 = DoubleBuffer
					2 = TripleBuffer
6,7	Cursor	1	×		0 = SingleBuffer
					1 = DoubleBuffer
					2 = TripleBuffer
	Reserved [P9]	✓	×		Reserved [P9]

Notes: When running single-buffered the 'queue' of buffers is zero deep so screen updates happen at once.

When double-buffered there is a queue of one item waiting for the next vblank. When triple-buffered there are 2 updates queued for the next and next-plus-one vblank.

Buffer availability is reported by the <u>VideoUpdate</u> register.

VideoUnderlayPan [P10]

Name	Туре	Index	Format
Video UnderlayPan	Region Zero	0x44	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	X	1	1	0x0X	X offset within first tile of first valid byte
				XX.0	
				XXX	
3	Reserved	1	×		
46	Y	1	1		Y offset within first tile of first valid byte
7	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

5-52 Proprietary and Confidential **3 D***la*

VideoMainPan

Name	Туре	Index	Format
VideoMainPan	Region Zero	0x45	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	X	1	1	0x0X	X offset within first tile of first valid byte
				XX.0	
				XXX	
3	Reserved	1	×		
46	Y	1	1		Y offset within first tile of first valid byte
7	Reserved	1	×		

Notes:

VideoOverlayPan

Name	Туре	Index	Format
VideoOverlayPan	Region Zero	0x46	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	X	1	1	0x0X	X offset within first tile of first valid byte
				XX.0	
				XXX	
3	Reserved	1	×		
46	Y	1	1		Y offset within first tile of first valid byte
7	Reserved	1	×		

Notes:

3D labs

VideoCursorPan [P10]

Name	Туре	Index	Format
VideoCursorPan	Region Zero	0x47	bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	X	1	1	0x0X	X offset within first tile of first valid byte
				XX.0	
				XXX	
3	Reserved	1	×		
46	Y	1	1		Y offset within first tile of first valid byte
7	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayAddress0 [P10]

Name	Type	Index	Format
VideoUnderlayAddress0	Region Zero	0x48	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX XX.X	Holds LSB of tile address of main image
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoUnderlayAddress1 [P10]

Name	Туре	Index	Format
VideoUnderlayAddress1	Region Zero	0x49	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

5-54 Proprietary and Confidential **3 D***la*

5-55

VideoUnderlayAddress2 [P10]

Name	Туре	Index	Format
VideoUnderlayAddress2	Region Zero	0x4A	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoUnderlayAddress3 [P10]

Name	Туре	Index	Format
VideoUnderlayAddress3	Region Zero	0x4B	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
03	Address	1	1	0x000 0.XX XX	Holds MSB of tile address of main image
47	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayStride0 [P10]

Name	Туре	Index	Format
VideoUnderlayStride0	Region Zero	0x4C	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

3D*labs* Proprietary and Confidential

VideoUnderlayStride1 [P10]

Name	Type	Index	Format
VideoUnderlayStride1	Region Zero	0x4D	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoUnderlayStride2 [P10]

Name	Type	Index	Format
VideoUnderlayStride2	Region Zero	0x4E	Address
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoUnderlayStride3 [P10]

Name	Туре	Index	Format	
Video UnderlayStride3	Region Zero	0x4F	Address	
	Control registe	+		

Bits	Name	Read	Write	Reset	Description
03	Address	1	1	0x000 0.XX XX	
47	Reserved	1	X		

Notes: Reserved register in P9, enabled in P10

5-56 Proprietary and Confidential **3D**/a

VideoMainAddress0

Name	Туре	Index	Format
VideoMainAddress0	Region Zero	0x50	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoMainAddress1

Name	Туре	Index	Format
VideoMainAddress1	Region Zero	0x51	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoMainAddress2

Name	Туре	Index	Format
VideoMainAddress2	Region Zero	0x52	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoMainAddress3

Name	Туре	Index	Format
VideoMainAddress3	Region Zero	0x53	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	✓	✓	0x000 0.XX XX	Holds MSB of tile address of main image

Notes:

VideoMainStride0

Name	Type	Index	Format
VideoMainStride0	Region Zero	0x54	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoMainStride1

Name	Туре	Index	Format	
VideoMainStride1	Region Zero	0x55	Address	
	Control registe	r		

	Bits	Name	Read	Write	Reset	Description
F	07	Address	1	1	0xXX	
					XX.X	
					XXX	
	831	Reserved	1	×		

Notes:

5-58 Proprietary and Confidential **3D***la*

5-59

VideoMainStride2

Name	Туре	Index	Format
VideoMainStride2	Region Zero	0x56	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoMainStride3

Name	Туре	Index	Format	
VideoMainStride3	Region Zero	0x57	Address	
	C min to ti			

Control register

Bits	Name	Read	Write	Reset	Description
03	Address	✓	1	0x000 0.XX XX	
47	Reserved	1	×		

Notes:

VideoOverlayAddress0

Name	Туре	Index	Format
VideoOverlayAddress0	Region Zero	0x58	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of overlay
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoOverlayAddress1

Name	Type	Index	Format
VideoOverlayAddress1	Region Zero	0x59	Address
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoOverlayAddress2

Name	Туре	Index	Format
VideoOverlayAddress2	Region Zero	0x5A	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoOverlayAddress3

Name	Type	Index	Format
VideoOverlayAddress3	Region Zero	0x58	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
03	Address	✓	1	0x000	Holds MSB of tile address of overlay
				0.XX	
				XX	

Notes:

5-60 Proprietary and Confidential **3D***la*

VideoOverlayStride0

Name	Type	Index	Format	
VideoOverlayStride0	Region Zero	0x5C	Address	

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of overlay
				XX.X	
				XXX	

Notes:

VideoOverlayStride1

Name	Type	Index	Format	
VideoOverlayStride1	Region Zero	0x5D	Address	

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of overlay
				XX.X	
				XXX	

Notes:

VideoOverlayStride2

Name	Туре	Index	Format	
VideoOverlayStride2	Region Zero	0x5E	Address	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoOverlayStride3

Name	Type	Index	Format
VideoOverlayStride3	Region Zero	0x5F	Address
	0 1 1		

Control register

Bits	Name	Read	Write	Reset	Description
03	Address	1	1	0x000	
				0.XX	
				XX	
47	Reserved	1	×		

Notes:

VideoCursorAddress0 [P10]

Name	Туре	Index	Format	
VideoCursorAddress0	Region Zero	0x60	Address	

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of cursor
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoCursorAddress1 [P10]

Name	Туре	Index	Format	
VideoCursorAddress1	Region Zero	0x61	Address	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

5-62 Proprietary and Confidential **3 D***la*

5-63

VideoCursorAddress2 [P10]

Name	Туре	Index	Format
VideoCursorAddress2	Region Zero	0x62	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoCursorAddress3 [P10]

Name	Туре	Index	Format
VideoCursorAddress3	Region Zero	0x63	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
03	Address	1	√	0x00. XXX X	Holds MSB of tile address of cursor
47	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorStride0 [P10]

Name	Туре	Index	Format
VideoCursorStride0	Region Zero	0x64	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	✓	✓	0xXX XX.X XXX	Holds LSB of tile address of overlay

Notes: Reserved register in P9, enabled in P10

3D*labs* Proprietary and Confidential

VideoCursorStride1 [P10]

Name	Туре	Index	Format
VideoCursorStride1	Region Zero	0x65	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of overlay
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoCursorStride2 [P10]

Name	Type	Index	Format
VideoCursorStride2	Region Zero	0x66	Address
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of overlay
				XX.X	
				XXX	

Notes: Reserved register in P9, enabled in P10

VideoCursorStride3 [P10]

Name	Туре	Index	Format	
VideoCursorStride3	Region Zero	0x67	Address	

Control register

Bits	Name	Read	Write	Reset	Description
03	Address	✓	✓	0x000 0.XX XX	Holds LSB of tile address of overlay
47	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

5-64 Proprietary and Confidential **3 D***la*

P9/P10 Reference Guide Volume II Hardware Registers

VideoMainStereoAddress0

Name	Туре	Index	Format
VideoMainStereoAddress0	Region Zero	0x68	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of stereo main image
				XX.X	
				XXX	

N	\cap	tρ	c	•

VideoMainStereoAddress1

Name	Type	Index	Format
VideoMainStereoAddress1	Region Zero	0x69	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	✓	✓	0xXX XX.X XXX	Holds LSB of tile address of stereo main image

Notes:		
INUICS.		

VideoMainStereoAddress2

Name	Type	Index	Format
VideoMainStereoAddress2	Region Zero	0x6A	Address

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	✓	✓	0xXX XX.X XXX	Holds LSB of tile address of stereo main image

N.T.		
Notes:		

3 D*labs* Proprietary and Confidential

5-65

VideoMainStereoAddress3

Name	Туре	Index	Format
VideoOverlayStride1	Region Zero	0x6B	Address

Control register

	Bits	Name	Read	Write	Reset	Description
0	3	Address	1	1	0x000 0.XX XX	Holds MSB of tile address of stereo main image
4	7	Reserved	✓	×		

N	\sim	te	c	
Τ.Λ	v	u	0	٠

VideoOverlayStereoAddress0

Name	Туре	Index	Format
VideoOverlayStereo	Region Zero	0x6C	Address
Address0			

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	Holds LSB of tile address of stereo overlay image
				XX.X	
				XXX	

Notes:

VideoOverlayStereoAddress1

Name	Туре	Index	Format
VideoOverlayStereo	Region Zero	0x6D	Address
Address1			

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XXX	
				XXX	

NT .		
Notes:		

5-66 Proprietary and Confidential **3D***la*

P9/P10 Reference Guide Volume II Hardware Registers

VideoOverlayStereoAddress2

Name	Type	Index	Format
VideoOverlayStereoAddress	Region Zero	0x6E	Address
2			

Control register

Bits	Name	Read	Write	Reset	Description
07	Address	✓	✓	0x000. 000	

Notes		

Video Overlay Stereo Address 3

Name	Туре	Index	Format
VideoOverlayStereoAddress	Region Zero	0x6F	Address
3			

Control register

Bits	Name	Read	Write	Reset	Description
03	Address	✓	✓	0x000 0.XX XX	Holds MSB of tile address of stereo overlay image
47	Reserved	1	X		

110165

3D labs

5-67

VideoTiming

Name	Туре	Index	Format
VideoTiming	Region Zero	0x70	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	TimingEnable	1	1	0x000.	0 = Disabled. 1 = Enabled
1	<mark>Underlay</mark> Enable	✓	✓		0 = Disabled. 1 = Enabled
	Reserved [P9]	√	×		Reserved
2	MainEnable	1	1		0 = Disabled. 1 = Enabled
3	OverlayEnable	1	1		0 = Disabled. 1 = Enabled
4	<mark>CursorEnable</mark>	√	✓		0 = Disabled. 1 = Enabled
	Reserved [P9]	√	×		Reserved
57	Reserved	1	×		Reserved

Notes:

VideoGenlock

Name	Туре	Index	Format
VideoGenlock	Region Zero	0x71	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	Mode	1	1	0x0X	0 = Off
				XX.X	1 = External
				XXX	2 = Internal
					3 = Reserved
<mark>2,3</mark>	Head [P10]	√	√		Head to lock to for internal mode [P10]
	Reserved [P9]	√	×		Reserved [P9]
4	LockStereo	1	×		
5	InvertHSync	1	×		
6	InvertVSync	1	×		
7	VOnly	1	×		Ignore horizontal sync, lock to vertical only

Notes:

5-68 Proprietary and Confidential **3D***la*

VideoLineCountLow

Name	Туре	Index	Format
VideoLineCountLow	Region Zero	0x72	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	×	0xXX	Low byte of line number being processed
				XX.X	
				XXX	

Notes:

${\bf Video Line Count High}$

Name	Туре	Index	Format
VideoLineCountHigh	Region Zero	0x73	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	√	×	0xXX XX.X XXX	High byte of line number being processed

Notes:

VideoHSyncStartLow

Name	Туре	Index	Format	
VideoHSyncStartLow	Region Zero	0x74	Address	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Address	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

5-69

VideoHSyncStartHigh

Name	Type	Index	Format
VideoHSyncStartHigh	Region Zero	0x75	Integer
	Control register		

	Bits	Name	Read	Write	Reset	Description
ĺ	07	Count	1	1	0xXX	
					XX.X	
					XXX	
ſ	831	Reserved	1	×		

Notes:

VideoHSyncEndLow

Name	Туре	Index	Format	
VideoHSyncEndLow	Region Zero	0x76	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Count	1	✓	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

${\bf Video HSync End High}$

Name	Туре	Index	Format
VideoOverlayStride1	Region Zero	0x77	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

5-70 Proprietary and Confidential **3D***la*

VideoHBlankEndLow

Name	Туре	Index	Format
VideoHBlankEndLow	Region Zero	0x78	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoHBlankEndHigh

Name	Туре	Index	Format
VideoHBlankEndHigh	Region Zero	0x79	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	✓	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoHTotalLow

Name	Туре	Index	Format	
VideoHTotalLow	Region Zero	0x7A	Integer	
	Control registe	r		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

3D *labs* Proprietary and Confidential

VideoHTotalHigh

Name	Type	Index	Format
VideoHTotalHigh	Region Zero	0x7B	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoVSyncStartLow

Name	Type	Index	Format
VideoVSyncStartLow	Region Zero	0x7C	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoVSyncStartHigh

Name	Type	Index	Format
VideoVSyncStartHigh	Region Zero	0x7D	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

5-72 Proprietary and Confidential **3D***la*

VideoVSyncEndLow

Name	Туре	Index	Format
VideoVSyncEndLow	Region Zero	0x7E	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf Video VSync End High}$

Name	Туре	Index	Format
VideoVSyncEndHigh	Region Zero	0x7F	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoVBlankEndLow

Name	Туре	Index	Format
VideoOverlayStride1	Region Zero	0x80	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

5-73

VideoVBlankEndHigh

Name	Туре	Index	Format	
VideoVBlankEndHigh	Region Zero	0x81	Integer	
	Control register	•		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoVTotalLow

Name	Туре	Index	Format
VideoVTotalLow	Region Zero	0x82	Integer
	C 1		

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoVTotalHigh

Name	Туре	Index	Format	
VideoVTotalHigh	Region Zero	0x83	Integer	
	Control tegiste	r		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

5-74 Proprietary and Confidential **3D***la*

VideoGenlockHLow

Name	Туре	Index	Format
VideoGenlockHLow	Region Zero	0x84	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoGenlockHHigh

Name	Type	Index	Format
VideoGenlockHHigh	Region Zero	0x85	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoGenlockVLow

Name	Туре	Index	Format	
VideoGenlockVLow	Region Zero	0x86	Integer	
	Control tegistet	•		

	Bits	Name	Read	Write	Reset	Description
ſ	07	Count	1	1	0xXX	
					XX.X	
L					XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoGenlockVHigh

Name	Туре	Index	Format
VideoGenlockVHig	Region Zero	0x87	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

NΙ	^	tο	c	٠

VideoUnderlayFormat [P10]

Name	Туре	Index	Format
VideoUnderlayFormat	Region Zero	0x88	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	PixelSize	1	1	0xXX	0 = 8 bits.
				XX.X	1 = 16 bits.
				XXX	2 = 32 bits
25	Format	1	1		
6	AlphaLUT	1	1		0 = Take LUT select from LUTSelect register
	Select				1 = Take LUT select from alpha channel
7	Linear	1	1		0 = Undefined color bits set to zero
					1 = Undefined color bits linearly extended from
					upper bits

Notes: Reserved register in P9, enabled in P10

5-76 Proprietary and Confidential **3D***la*

P9/P10 Reference Guide Volume II Hardware Registers

VideoMainFormat

Name	Туре	Index	Format
VideoMainFormat	Region Zero	0x89	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	PixelSize	1	1	0xXX	0 = 8 bits.
				XX.X	1 = 16 bits.
				XXX	2 = 32 bits
25	Format	1	1		
6	AlphaLUT	1	1		0 = Take LUT select from LUTSelect register
	Select				1 = Take LUT select from alpha channel
7	Linear	1	1		0 = Undefined color bits set to zero
					1 = Undefined color bits linearly extended from
					upper bits

Notes: The Format field and pixelsize considerations are described in the Video Format table below.

Pixel Format Table

Format	Name	RGB	Bits/pixel	R	G	В	Α	Index
0	CI8	-	8	-	-	-	-	0-7
1	3:3:2	0	8	0-2	3-5	6-7	-	-
1	3:3:2	1	8	5-7	2-4	0-1	-	-
2	5:5:5:1	0	16	0-4	5-9	10-14	15	-
2	5:5:5:1	1	16	10-14	5-9	0-4	15	-
3	5:6:5	0	16	0-4	5-10	11-15	-	-
3	5:6:5	1	16	11-15	5-10	0-4	-	-
4	8:8:8:8	0	32	0-7	8-15	16-23	24-31	-
4	8:8:8:8	1	32	16-23	8-15	0-7	24-31	-
5	10:10:10:2	0	32	0-9	10-19	20-29	30-31	-
5	10:10:10:2	1	32	20-29	10-19	0-9	30-31	-
6	CI4	-	4	-	-	_	_	0-3, 4-7

The pixel size is independent of the color format, so it is possible to have an 8 bit pixel with a 32 bit stride. The bitmask format is different because it uses 4 bits per pixel regardless of pixel size; this format must be used with a one byte pixel size. The pipeline maintains 16 bits per component, but various operations use different numbers of bits. Color key uses 8 bits, blends use 8 bits, LUTs use 8 bits for input but output 10 bits.

3D*labs* Proprietary and Confidential 5-77

VideoOverlayFormat

Name	Туре	Index	Format
VideoOverlayFormat	Region Zero	0x8A	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	PixelSize	1	1	0xXX	0 = 8 bits.
				XX.X	1 = 16 bits.
				XXX	2 = 32 bits
25	Format	1	1		
6	AlphaLUT	1	1		0 = Take LUT select from LUTSelect register
	Select				1 = Take LUT select from alpha channel
7	Linear	1	1		0 = Undefined color bits set to zero
					1 = Undefined color bits linearly extended from
					upper bits

Notes:

VideoCursorFormat [P10]

Name	Туре	Index	Format
VideoCursorFormat	Region Zero	0x8B	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	PixelSize	1	1	0xXX	0 = 8 bits.
				XX.X	1 = 16 bits.
				XXX	2 = 32 bits
25	Format	1	1		
6	AlphaLUT	1	1		0 = Take LUT select from LUTSelect register
	Select				1 = Take LUT select from alpha channel
7	Linear	1	1		0 = Undefined color bits set to zero
					1 = Undefined color bits linearly extended from
					upper bits
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

5-78 Proprietary and Confidential **3D***la*

VideoUnderlayXStartLow [P10]

Name	Туре	Index	Format
VideoUnderlayXStartLow	Region Zero	0x8C	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayXStartHigh [P10]

Name	Туре	Index	Format
VideoUnderlayXStart High	Region Zero	0x8D	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayYStartLow [P10]

Name	Туре	Index	Format
VideoUnderlayYStartLow	Region Zero	0x8E	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Count	✓	✓	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

3Dlabs Proprietary and Confidential

VideoUnderlayYStartHigh [P10]

Name	Type	Index	Format
Video Underlay Y Start High	Region Zero	0x8F	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayXEndLow [P10]

Name	Туре	Index	Format
VideoUnderlayXEndLow	Region Zero	0x90	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayXEndHigh [P10]

Name	Туре	Index	Format
VideoUnderlayXEndHigh	Region Zero	0x91	Integer
	Control register		

	Bits	Name	Read	Write	Reset	Description
C	17	Count	✓	1	0xXX	
					XXX	
					XXX	
8	31	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

5-80 Proprietary and Confidential **3D**/a

VideoUnderlayYEndLow [P10]

Name	Туре	Index	Format
Video Underlay Y End Low	Region Zero	0x92	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayYEndHigh [P10]

Name	Type	Index	Format
VideoUnderlayYEndHigh	Region Zero	0x93	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoMainXStartLow

Name	Туре	Index	Format	
VideoMainXStartLow	Region Zero	0x94	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	X		

Notes:

3D*labs* Proprietary and Confidential

VideoMainXStartHigh

Name	Туре	Index	Format
VideoMainXStartHigh	Region Zero	0x95	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoMainYStartLow

Name	Туре	Index	Format
VideoMainYStartLow	Region Zero	0x96	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	✓	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoMainYStartHigh

Name	Type	Index	Format	
VideoMainYStartHigh	Region Zero	0x97	Integer	
	Control registe.	r		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

5-82 Proprietary and Confidential **3D***la*

VideoMainXEndLow

Name	Туре	Index	Format
VideoMainXEndLow	Region Zero	0x98	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	✓	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

${\bf Video Main X End High}$

Name	Type	Index	Format	
VideoMainXEndHigh	Region Zero	0x99	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoMainYEndLow

Name	Туре	Index	Format	
VideoMainYEndLow	Region Zero	0x9A	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

3D *labs* Proprietary and Confidential

VideoMainYEndHigh

Name	Туре	Index	Format
VideoMainYEndHigh	Region Zero	0x09B	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Count	1	✓	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoOverlayXStartLow

Name	Туре	Index	Format
VideoOverlayXStartLow	Region Zero	0x9C	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	X		

Notes:

VideoOverlayXStartHigh

Name	Туре	Index	Format
VideoOverlayXStartHigh	Region Zero	0x9D	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

5-84 Proprietary and Confidential **3D***la*

VideoOverlayYStartLow

Name	Туре	Index	Format
VideoOverlayYStartLow	Region Zero	0x9E	Integer
	0 . 1		

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoOverlayYStartHigh

Name	Туре	Index	Format
VideoOverlayYStartHigh	Region Zero	0x9F	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	X		

Notes:

${\bf Video Overlay X End Low}$

Name	Туре	Index	Format
VideoOverlayXEndLow	Region Zero	0xA0	Integer
	Control tegister		

	Bits	Name	Read	Write	Reset	Description
C	17	Count	✓	1	0xXX	
					XXX	
					XXX	
8	31	Reserved	1	×		

Notes:

3D *labs* Proprietary and Confidential

VideoOverlayXEndHigh

Name	Туре	Index	Format
VideoOverlayXEndHigh	Region Zero	0xA1	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoOverlayYEndLow

Name	Туре	Index	Format
VideoOverlayYEndLow	Region Zero	0xA2	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

${\bf Video Overlay Y End High}$

Name	Туре	Index	Format
VideoOverlayYEndHigh	Region Zero	0xA3	Integer
	Control register		

	Bits	Name	Read	Write	Reset	Description
C	17	Count	✓	1	0xXX	
					XXX	
					XXX	
8	31	Reserved	1	×		

Notes:

5-86 Proprietary and Confidential **3D***la*

VideoCursorXStartLow [P10]

Name	Туре	Index	Format
VideoCursorXStartLow	Region Zero	0xA4	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorXStartHigh [P10]

Name	Туре	Index	Format
VideoCursorXStartHigh	Region Zero	0xA5	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorYStartLow [P10]

Name	Туре	Index	Format	
VideoCursorYStartLow	Region Zero	0xA6	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	✓	X		

Notes: Reserved register in P9, enabled in P10

3D*labs* Proprietary and Confidential

VideoCursorYStartHigh [P10]

Name	Туре	Index	Format
VideoCursorYStartHigh	Region Zero	0xA7	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorXEndLow [P10]

Name	Туре	Index	Format
VideoCursorXEndLow	Region Zero	0xA8	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorXEndHigh [P10]

Name	Туре	Index	Format	
VideoCursorXEndHigh	Region Zero	0xA9	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	X		

Notes: Reserved register in P9, enabled in P10

5-88 Proprietary and Confidential **3 D***la*

VideoCursorYEndLow [P10]

Name	Туре	Index	Format
VideoCursorYEndLow	Region Zero	0xAA	VideoCursorYEndLow
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorYEndHigh [P10]

Name	Туре	Index	Format
VideoCursorYEndHigh	Region Zero	0xAB	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	√	1	0xXX	
				XX.X	
				XXX	
831	Reserved	✓	×		

Notes: Reserved register in P9, enabled in P10

VideoBackgroundR

Name	Туре	Index	Format
VideoBackgroundR	Region Zero	0xB0	Integer

Bits	Name	Read	Write	Reset	Description
07	Red	✓	1	0xXX	
				XXX	
				XXX	
831	Reserved	√	×		

Notes:

3Dlabs Proprietary and Confidential

VideoBackgroundG

Name	Type	Index	Format
VideoBackgroundG	Region Zero	0xB1	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Green	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoBackgroundB

Name	Туре	Index	Format	
VideoBackgroundB	Region Zero	0xB2	Integer	
	Control to minto	4		

Control register

Bits	Name	Read	Write	Reset	Description
07	Blue	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoScale

Name	Туре	Index	Format
VideoScale	Region Zero	0xB3	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	HScale	✓	✓	0xXX XXX XXX	Horizontal scale
47	VScale	1	1		Vertical scale

Notes: The equation used to work out the scale factor is:

horizontal factor = (source width / display width) - 1/4) * 32

vertical factor = (source height / display height) - 1/4) * 32

5-90 Proprietary and Confidential **3 D***la*

VideoUnderlayKeyTest [P10]

Name	Туре	Index	Format
VideoUnderlayKeyTest	Region Zero	0xB4	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	TestMode	1	1	0xXX	0 = Off $1 = Always$
				XX.X	2 = Equal3 = NotEqual
				XXX	
2	Test	1	1		0 = Src $1 = Dst$
3	TestColor	1	1		
4	TestAlpha	1	1		
5	ReplaceOnFail	1	1		
6	ReplaceAlpha	1	1		
7	ReplaceLUT	1	1		

Notes: Reserved register in P9, enabled in P10

Each pixel to be displayed may have contributions from any of four channels. The pixel color is determined by working through the channels in order from underlay (Key0), main, overlay, to cursor (Key 3). The first destination field in the sequence (underlay), is set to the background color so that any undefined regions of the screen have a color. This is mainly used when the framebuffer does not match a fixed resolution display - the image can be centered on the display and the background color used to fill around the edges. The sequence of operations in the key process is:

- Test
- Apply logic op between source and destination to form new destination.
- Blend

For more information see the *Programmer's Guide*: discussion of <u>Blending</u> and Video Channel <u>Initialization</u>.

VideoUnderlayKeyOp [P10] (configured)

Name	Туре	Index	Format
VideoUnderlayKeyOp	Region Zero	0xB5	Bitfield
· · · · ·	a		

Control t	egister
-----------	---------

Bits	Name	Read	Write	Reset	Description
0,1	LogicOp	1	1	0xXX XX.X XXX	0 = Off $1 = Dst XOR Src2 = Dst OR Src$ $3 = Dst AND Src$
24	BlendMode	1	1	AAA	0 = Off 1 = Register 2 = SrcAlpha 3 = DstAlpha 4 = SrcColor
5	Conditional Blend	1	1		If enabled, do not apply blend if current test fails
6	BlendLUT	1	1		Change LUT select based on blend factor
7	Overlay	1	1		Special alpha-as-overlay mode
831	Reserved	1	X		

Notes: Reserved register in P9, enabled in P10

3Dlabs Proprietary and Confidential

5-91

VideoMainKeyTest

Name	Туре	Index	Format
VideoMainKeyTest	Region Zero	0xB6	Bitfield
	Control register		

Bits	Name	Read	Write	Reset		Description
0,1	TestMode	1	1	0xXX XX.X	0 = Off 2 = Equal	1 = Always 3 = NotEqual
2	Test	1	1	XXX	0 = Src	1 = Dst
3	TestColor	1	1			
4	TestAlpha	1	1			
5	ReplaceOnFail	1	1			
6	ReplaceAlpha	1	1			
7	ReplaceLUT	1	1			
831	Reserved	1	X			

Notes: Each pixel to be displayed may have contributions from any of four channels. The pixel color is determined by working through the channels in order from underlay (Key0), main, overlay, to cursor (Key 3).

Note: in P9 only the Main and Overlay channels are supported.

The first destination field in the sequence, is set to the background color so that any undefined regions of the screen have a color. This is mainly used when the framebuffer does not match a fixed resolution display - the image can be centered on the display and the background color used to fill around the edges. The sequence of operations in the key process is:

- Test
- Apply logic op between source and destination to form new destination.
- Blend

For more information see the *Programmer's Guide*: discussion of <u>Blending</u> and Video Channel Initialization.

5-92 Proprietary and Confidential **3D**/a

VideoMainKeyOp

Name	Туре	Index	Format
VideoMainKeyOp	Region Zero	0xB7	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	LogicOp	1	1	0xXX XX.X XXX	0 = Off 2 = Dst OR Src	1 = Dst XOR Src 3 = Dst AND Src
24	BlendMode	1	1	AAA	0 = Off 2 = SrcAlpha 4 = SrcColor	1 = Register 3 = DstAlpha
5	Conditional Blend	1	1		If enabled, do not ap	pply blend if current or previous
6	BlendLUT	1	1		Change LUT select	based on blend factor
7	Overlay	1	1		Special alpha-as- overlay mode	
831	Reserved	1	×			•

Notes:

3D labs

5-93

Hardware Registers P9/P10Reference Guide Volume II

VideoOverlayKeyTest

Name	Туре	Index	Format
VideoOverlayKeyTest	Region Zero	0xB8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	TestMode	1	1	0xXX	0 = Off $1 = Always$
				XX.X	2 = Equal3 = NotEqual
				XXX	
2	Test	1	1		0 = Src $1 = Dst$
3	TestColor	1	1		
4	TestAlpha	1	1		
5	ReplaceOnFail	1	1		
6	ReplaceAlpha	1	1		
7	ReplaceLUT	1	1		
831	Reserved	1	×		

Notes: Each pixel to be displayed may have contributions from any of four channels. The pixel color is determined by working through the channels in order from underlay (Key0), main, overlay, to cursor (Key 3).

Note: in P9 only the Main and Overlay channels are supported.

The first destination field in the sequence (underlay), is set to the background color so that any undefined regions of the screen have a color. This is mainly used when the framebuffer does not match a fixed resolution display - the image can be centered on the display and the background color used to fill around the edges. The sequence of operations in the key process is:

- Test
- Apply logic op between source and destination to form new destination.
- Blend.

For more information see the *Programmer's Guide*. discussion of <u>Blending</u> and Video Channel <u>Initialization</u>.

5-94 Proprietary and Confidential **3D**/a

P9/P10 Reference Guide Volume II Hardware Registers

VideoOverlayKeyOp

Name	Туре	Index	Format
VideoOverlayKeyOp	Region Zero	0xB9	Bitfield

Control register

Bits	Name	Read	Write	Reset	1	Description
0,1	LogicOp	1	1	0xXX XX.X XXX	0 = Off 2 = Dst OR Src	1 = Dst XOR Src 3 = Dst AND Src
24	BlendMode	1	1	AAA	0 = Off 2 = SrcAlpha 4 = SrcColor	1 = Register 3 = DstAlpha
5	ConditionalBle nd	1	1		If enabled, do not ap	ply blend if current or previous
6	BlendLUT	1	1		Change LUT select b	ased on blend factor
7	Overlay	1	1		Special alpha-as-overlay mode	
831	Reserved	1	×			

Notes

3D labs

5-95

Hardware Registers P9/P10Reference Guide Volume II

VideoCursorKeyTest [P10]

Name	Туре	Index	Format
VideoCursorKeyTest	Region Zero	0xBA	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	TestMode	1	1	0xXX XX.X	0 = Off 2 = Equal	1 = Always 3 = NotEqual
				XXX	-	•
2	Test	1	1		0 = Src	1 = Dst
3	TestColor	1	1			
4	TestAlpha	1	1			
5	ReplaceOnFail	1	1			
6	ReplaceAlpha	1	1			
7	ReplaceLUT	1	1			
831	Reserved	1	×			

Notes: Reserved register in P9, enabled in P10

Each pixel to be displayed may have contributions from any of four channels. The pixel color is determined by working through the channels in order from underlay (Key0), main, overlay, to cursor (Key 3). The first destination field in the sequence (underlay), is set to the background color so that any undefined regions of the screen have a color. This is mainly used when the framebuffer does not match a fixed resolution display - the image can be centered on the display and the background color used to fill around the edges. The sequence of operations in the key process is:

- Test
- Apply logic op between source and destination to form new destination.
- Blend

For more information see the *Programmer's Guide* discussion of <u>Blending</u> and Video Channel <u>Initialization</u>.

5-96 Proprietary and Confidential **3D**/a

VideoCursorKeyOp [P10]

Name	Туре	Index	Format
VideoCursorKeyOp	Region Zero	0xBB	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
01	LogicOp	1	1	0xXX XX.X	0 = Off 2 = Dst OR Src	1 = Dst XOR Src 3 = Dst AND Src
24	BlendMode	1	1	XXX	0 = Off 2 = SrcAlpha	1 = Register 3 = DstAlpha
5	Conditional Blend	1	1		4 = SrcColor If enabled, do not aptests fail	oply blend if current or previous
6	BlendLUT	1	1		Change LUT select	based on blend factor
7	Overlay	1	1		Special alpha-as-ove	rlay mode
831	Reserved	1	×			•

Notes: Reserved register in P9, enabled in P10

VideoUnderlayKeyR [P10]

Name	Туре	Index	Format
Video Underlay Key R	Region Zero	0xBC	Integer

Control register

	Bits	Name	Read	Write	Reset	Description
=	07	Red	✓	1	0xXX	
					XX.X	
					XXX	
	831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayKeyG [P10]

Name	Туре	Index	Format
Video UnderlayKeyG	Region Zero	0xBD	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Green	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

3D*labs* Proprietary and Confidential

VideoUnderlayKeyB [P10]

Name	Type	Index	Format
VideoUnderlayKeyB	Region Zero	0xBE	Integer

Control register

	Bits	Name	Read	Write	Reset	Description
ĺ	07	Blue	1	1	0xXX	
					XX.X	
					XXX	
ſ	831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayKeyA [P10]

Name	Туре	Index	Format	
Video Underlay Key A	Region Zero	0xBF	Integer	
	Control register			

ſ	Bits	Name	Read	Write	Reset	Description
F	07	Alpha	1	1	0xXX	
					XX.X	
					XXX	
Ī	831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoMainKeyR

Name	Туре	Index	Format
VideoMainKeyR	Region Zero	0xC0	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Red	1	1	0xXX XX.X XXX	
831	Reserved	1	×		

Notes:

5-98 Proprietary and Confidential **3 D***la*

VideoMainKeyG

Name	Туре	Index	Format
VideoMainKeyG	Region Zero	0xC1	Integer
	0 1 .		

Control register

Bits	Name	Read	Write	Reset	Description
07	Green	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoMainKeyB

Name	Туре	Index	Format
VideoMainKeyB	Region Zero	0xC2	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Blue	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoMainKeyA

Name	Туре	Index	Format
VideoMainKeyA	Region Zero	0xC3	Integer
	Control register		

	Bits	Name	Read	Write	Reset	Description
0	.7	Alpha	1	1	0xXX	
					XX.X XXX	
8	.31	Reserved	1	×		

Notes:

3D *labs* Proprietary and Confidential

VideoOverlayKeyR

Name	Туре	Index	Format
VideoOverlayKeyR	Region Zero	0xC4	Integer
	Control tegister		

Bits	Name	Read	Write	Reset	Description
07	Red	1	✓	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoOverlayKeyG

Name	Type	Index	Format	
VideoOverlayKeyG	Region Zero	0xC5	Integer	
	Control registe.	t		

Bits	Name	Read	Write	Reset	Description
07	Green	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoOverlayKeyB

Name	Type	Index	Format	
VideoOverlayKeyB	Region Zero	0xC6	Integer	
	Control registe.	r		

Bits	Name	Read	Write	Reset	Description
07	Blue	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

5-100 Proprietary and Confidential **3D***la*

VideoOverlayKeyA

Name	Туре	Index	Format
VideoOverlayKeyA	Region Zero	0xC7	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Alpha	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoCursorKeyR [P10]

Name	Туре	Index	Format
VideoCursorKeyR	Region Zero	0xC8	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Red	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorKeyG [P10]

Name	Туре	Index	Format
VideoCursorKeyG	Region Zero	0xC9	Integer
	Control register		

	Bits	Name	Read	Write	Reset	Description
0.	7	Green	✓	1	0xXX	
					XX.X	
					XXX	
8.	31	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

3Dlabs Proprietary and Confidential

VideoCursorKeyB [P10]

Name	Туре	Index	Format
VideoCursorKeyB	Region Zero	0xCA	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Blue	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoCursorKeyA [P10]

Name	Туре	Index	Format
VideoCursorKeyA	Region Zero	0xCB	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Alpha	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

VideoUnderlayBlend [P10]

Name	Туре	Index	Format	
VideoUnderlayBlend	Region Zero	0xCC	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Factor	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

5-102 Proprietary and Confidential **3 D***la*

VideoMainBlend

Name	Type	Index	Format
VideoMainBlend	Region Zero	0xCD	Integer
	a , ,		

Control register

Bits	Name	Read	Write	Reset	Description
07	Factor	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoOverlayBlend

Name	Type	Index	Format
VideoOverlayBlend	Region Zero	0xCE	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Factor	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	×		

Notes:

VideoCursorBlend [P10]

Name	Туре	Index	Format	
VideoCursorBlend	Region Zero	0xCF	Integer	
	Control registe	r		

Bits	Name	Read	Write	Reset	Description
07	Factor	1	1	0xXX	
				XX.X	
				XXX	
831	Reserved	1	X		

Notes: Reserved register in P9, enabled in P10

3D labs

VideoLUT0

Name	Туре	Index	Format
VideoLUT0	Region Zero	0xD0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	Mode	1	1	0x000 0.0000	0 = RGB 1 = ColorIndex 2 = AlphaIndex
2,3	Width	1	1		0 = 6 bit LUT
4	<mark>Underlay</mark> Enable	√	✓		Enable = 1 [P10]
	Reserved [P9]	✓	×		Reserved [P9]
5	MainEnable	1	1		
6	OverlayEnable	1	1		
<mark>7</mark>	CursorEnable [P10]	√	✓		Enable = 1 [P10]
	Reserved [P9]	√	×		Reserved [P9]
831	Reserved	1	×		

Notes:

VideoLUT(1) [P10]

Name	Туре	Index	Format
VideoLUT1	Region Zero	0xD1	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	Mode	1	1	0x000	0 = RGB	1 = ColorIndex
				0.000	2 = AlphaIndex	
2,3	Width	1	1		0 = 6 bit LUT	1 = 8 bit LUT
					2 = 10 bit LUT	
4	Underlay	1	1			
	Enable					
5	MainEnable	1	1			
6	OverlayEnable	1	1			
7	CursorEnable	1	1			
831	Reserved	1	×			

Notes: Reserved register in P9, enabled in P10

5-104 Proprietary and Confidential **3D***la*

VideoLUTMode

Name	Туре	Index	Format
VideoLUTMode	Region Zero	0xD2	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Key	1	1	0x000	
				0.0000	
1,2	<mark>Chanel</mark>	✓	✓		0 = Underlay [P10 only, reserved in P9]
					1 = Main
					2 = Overlay
					3 = Cursor [P10 only, reserved in P9]
831	Reserved	1	×		

Notes:

VideoInterleaveControl

Name	Туре	Index	Format
VideoInterleaveControl	Region Zero	0xD3	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
O	Underlay [P10]	√	✓	0000	0 = Disabled $1 = Enabled$
				<mark>0.0000</mark>	
	Reserved [P9]	√	×		Reserved [P9]
1	Main	1	1		0 = Disabled. $1 = Enabled$
2	Overlay	1	1		0 = Disabled. $1 = Enabled$
<mark>3</mark>	<mark>Cursor</mark>	√	✓		0 = Disabled. $1 = Enabled$
	Reserved [P9]	√	×		Reserved [P9]
4,5	Channel	1	1		1 & 2 valid in P9, others reserved
6	ID	1	1		
731	Reserved	1	×		

Notes

3D labs

VideoInterleaveData

Name	Туре	Index	Format
Video Interleave Data	Region Zero	0xD4	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Underlay	✓	✓	0x000	0 = Disabled. $1 = Enabled$
				<mark>0.0000</mark>	[P10]
	Reserved [P9]	√	×		Reserved [P9]
1	Main	1	1		0 = Disabled $1 = Enabled$
2	Overlay	1	1		0 = Disabled. $1 = Enabled$
3	Cursor	√	✓		0 = Disabled $1 = Enabled$
	Reserved [P9]	√	×		Reserved [P9]
<mark>4,5</mark>	<mark>LUT</mark>	√	✓		
731	Reserved	1	×		

Notes:

VideoInterleaveOffsetX

Name	Туре	Index	Format
VideoInterleaveOffsetX	Region Zero	0xD5	Integer
	0 1 .		

Control register

Bits	Name	Read	Write	Reset	Description
06	XOffset	1	1	0xXX XX.X	Pixel offset
				XXX	
731	Reserved	1	×		

Notes:

VideoInterleaveOffsetY

Name	Туре	Index	Format
VideoInterleaveOffsetY	Region Zero	0xD6	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
06	YOffset	1	1	0xXX	Line offset
				XX.X	
				XXX	
731	Reserved	1	×		

Notes:

5-106 Proprietary and Confidential **3D***la*

VideoWindowID

Name	Туре	Index	Format
VideoWindowID	Region Zero	0xD8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0x000 0.0000	
1,2	Channel [P10]	✓	✓	0.0000	0 = Underlay 1 = Main 2 = Overlay 3 = Cursor
	Channel [P9]	✓	✓		0 = Reserved 1 = Main 2 = Overlay 3 = Reserved
331	Reserved	1	X		

Notes:

VideoWindowTable0

Name	Туре	Index	Format	
VideoWindowTable0	Region Zero	0xD9	Integer	
	Control register			

Bits	Name	Read	Write	Reset	Description
07	Data	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoWindowTable1

Name	Type	Index	Format
VideoWindowTable1	Region Zero	0xDA	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Data	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoClipRectEnable0

Name	Туре	Index	Format
VideoClipRectEnable0	Region Zero	0xDC	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
03	Reserved [P9]	✓	×		Reserved [P9]
<mark>O</mark>	<mark>UnderlayA</mark>	✓	✓	0xXX	
	[P10]			$\frac{\mathbf{X}\mathbf{X}\mathbf{X}}{\mathbf{X}\mathbf{X}\mathbf{X}}$	
1	UnderlayB [P10]	√	✓		
2	UnderlayC [P10]	√	✓		
3	UnderlayD [P10]	√	✓		
4	MainA	1	1		
5	MainB	1	1		
6	MainC	1	1		
7	MainD	1	1		

Notes:

VideoClipRectEnable1

Name	Туре	Index	Format
VideoClip RectEnable1	Region Zero	0xDD	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	OverlayA	1	1	0xXX	
				XX.X	
				XXX	
1	OverlayB	1	1		
2	OverlayC	1	1		
3	OverlayD	1	1		
<mark>47</mark>	Reserved [P9]	√	×		Reserved in P9, enabled in P10-
<mark>4</mark>	CursorA [P10]	✓	✓		
<mark>5</mark>	CursorB [P10]	✓	✓		
<mark>6</mark>	CursorC [P10]	✓	✓		
<mark>7</mark>	CursorD [P10]	✓	✓		
831	Reserved	1	×		

Notes:

5-108 Proprietary and Confidential **3D***la*

VideoClipRectXStartLowA

Name	Type	Index	Format
VideoClip RectXStart LowA	Region Zero	0xE0	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectXStartHighA

Name	Туре	Index	Format
VideoClip RectXStart HighA	Region Zero	0xE1	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectYStartLowA

Name	Туре	Index	Format
VideoClipRectYStart LowA	Region Zero	0xE2	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoClipRectYStartHighA

Name	Туре	Index	Format
VideoClipRectYStartHighA	Region Zero	0xE3	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	✓	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectXEndLowA

Name	Туре	Index	Format
VideoClipRectXEnd LowA	Region Zero	0xE4	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf Video Clip Rect X End High A}$

Name	Туре	Index	Format
VideoClipRectXEnd HighA	Region Zero	0xE5	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

5-110 Proprietary and Confidential **3 D***la*

VideoClipRectYEndLowA

Name	Type	Index	Format
VideoClipRectYEnd LowA	Region Zero	0xE6	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf Video Clip Rect Y End High A}$

Name	Туре	Index	Format
VideoClipRectYEnd HighA	Region Zero	0xE7	Integer
	C 1		

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectXStartLowB

Name	Type	Index	Format
VideoClipRectXStart LowB	Region Zero	0xE8	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoClipRectXStartHighB

Name	Typ	e	Index	Format
VideoClip RectXStartHi	ghB Reg	ion Zero	0xE9	Integer
	Con	ntrol register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectYStartLowB

Name	Туре	Index	Format
VideoClip RectYStartLowB	Region Zero	0xEA	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X XXX	

Notes:

${\bf Video Clip RectYS tart High B}$

Name	Туре	Index	Format
VideoClip RectYStartHighB	Region Zero	0xEB	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX XX.X	
				XXX	

Notes:

5-112 Proprietary and Confidential **3 D**la

${\bf VideoClipRectXEndLowB}$

Name	Type	Index	Format
VideoClip RectXEndLowB	Region Zero	0xEC	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectXEndHighB

Name	Type	Index	Format
VideoClipRectXEnd HighB	Region Zero	0xED	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf VideoClipRectYEndLowB}$

Name	Туре	Index	Format
VideoClip RectYEndLowB	Region Zero	0xEE	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX XX.X	
				XXX	

Notes:

3D labs

VideoClipRectYEndHighB

Name	Туре	Index	Format
VideoClipRectYEnd HighB	Region Zero	0xEF	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectXStartLowC

Name	Туре	Index	Format
VideoClipRectXStart LowC	Region Zero	0xF0	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

Video Clip Rect X Start High C

Name	Туре	Index	Format
VideoClipRectXStart HighC	Region Zero	0xF1	Integer
	C 1 !		

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XXX	
				XXX	

Notes:

5-114 Proprietary and Confidential **3 D***la*

VideoClipRectYStartLowC

Name	Туре	Index	Format
VideoClip RectYStartLowC	Region Zero	0xF2	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectYStartHighC

Name	Туре	Index	Format
VideoClip RectYStartHighC	Region Zero	0xF3	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf VideoClipRectXEndLowC}$

Name	Туре	Index	Format
VideoClipRectXEnd LowC	Region Zero	0xF4	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D *labs* Proprietary and Confidential

VideoClipRectXEndHighC

Name	Туре	Index	Format
VideoClip RectXEnd HighC	Region Zero	0xF5	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectYEndLowC

Name	Туре	Index	Format
VideoClipRectYEnd LowC	Region Zero	0xF6	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf Video Clip Rect Y End High C}$

Name	Туре	Index	Format
VideoClipRectYEnd HighC	Region Zero	0xF7	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

5-116 Proprietary and Confidential **3 D***la*

VideoClipRectXStartLowD

Name	Туре	Index	Format
VideoClipRectXStart LowD	Region Zero	0xF8	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectXStartHighD

Name	Туре	Index	Format
VideoClip RectXStartHighD	Region Zero	0xF9	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoClipRectYStartLowD

Name	Type	Index	Format
VideoClipRectYStart LowD	Region Zero	0xFA	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

3D labs

VideoClipRectYStartHighD

Name	Type	Index	Format
VideoClip RectYStart HighD	Region Zero	0xFB	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf VideoClipRectXEndLowD}$

Name	Туре	Index	Format
VideoClipRectXEnd LowD	Region Zero	0xFC	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf Video Clip Rect X End High D}$

Name	Туре	Index	Format
VideoClipRectXEnd HighD	Region Zero	0xFD	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

5-118 Proprietary and Confidential **3 D***la*

${\bf VideoClipRectYEndLowD}$

Name	Туре	Index	Format
VideoClip RectYEnd LowD	Region Zero	0xFE	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

${\bf Video Clip Rect Y End High D}$

Name	Type	Index	Format
VideoClipRectYEnd HighD	Region Zero	0xFF	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Count	1	1	0xXX	
				XX.X	
				XXX	

Notes:

VideoDACControl

Name	Туре	Index	Format
VideoDACControl	Region Zero	0x100	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	DACPower Ctl	1	1	0x000 0.0000	0 = Normal operation 1 = LowPower
1	Reserved	1	1		Reserved for future use
2	BlankRed	1	1		0 = Disabled 1 = Enabled
3	BlankGreen	1	1		0 = Disabled 1 = Enabled
4	BlankBlue	1	1		0 = Disabled 1 = Enabled
5	Pedestal	1	1		0 = Disabled 1 = Enabled
6,7	Reserved	1	×		

Notes: Sync on Green is not supported on P10.

3D*labs* Proprietary and Confidential 5-119

VideoDACSyncControl

Name	Туре	Index	Format
Video DACSyncControl	Region Zero	0x101	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	HSyncCtl	1	1	0x000	0 = Active low at pin
				0.0000	1 = Active high at pin
1	VSyncCtl				-
2,3	Hsync Override				0 = Run
					1 = Force tristate
					2 = Force low
					3 = Force high
4,5	Vsync Override				0 = Run
					1 = Force tristate
					2 = Force low
					3 = Force high
6	Composite				0 = Enable.
					1 = Disable
7	Reserved	1	×		

3.7		
	otes:	

VideoDACSense

Name	Type	Index	Format
VideoDACSense	Region Zero	0x102	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Red	1	×	0x000	
				0.0XX	
1	Green	1	×	X	
2	Blue	1	×		
37	Reserved	1	×		

			Notes
			Notes:

5-120 Proprietary and Confidential **3D***la*

VideoDACDDC

Name	Туре	Index	Format
VideoDACDDC	Region Zero	0x103	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	ClkOut	1	1	0x000	
				0.XX	
				XX	
1	DataOut	1	1		
2	ClkIn	1	×		
3	DataIn	1	×		
47	Reserved	1	×		

Notes:

VideoDPMode

Name	Туре	Index	Format
VideoDPMode	Region Zero	0x104	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	Mode	1	1	0x000	0 = Off $1 = SinglePixel$
				0.0000	2 = DoublePixel 3 = AlphaPixel
25	StrobeDelay	1	1		Delay applied to output strobe in 250pS taps
6	StrobeInvert	1	1		
7	Reserved	1	×		

Notes:

3D labs

VideoDPSyncControl

Name	Туре	Index	Format
Video DP SyncControl	Region Zero	0x105	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description	
0	HSyncCtl	✓	✓	0x000	0 = Active low at pin.	
				0.0000	1 = Active high at pin	
1	VSyncCtl	1	1		0 = Active low at pin.	
					1 = Active high at pin.	
2,3	Hsync Override	1	1		0 = Run	1 = Reserved
					2 = Force low	3 = Force high
4,5	Vsync Override	1	1		0 = Run	1 = Reserved
					2 = Force low	3 = Force high
6	Composite	1	1		0 = Enable.	1 = Disable
7	BlankCtl	1	1		0 = Active low at pin.	
					1 = Active high at pin	

Notes:

VideoDPDDC [P10]

Name	Туре	Index	Format	
VideoDPDDC	Region Zero	0x106	Address	

Control register

Bits	Name	Read	Write	Reset	Description
0	ClkOut	1	1	0x000	
				0.XXI	
				Ι	
1	DataOut	1	1		
2	ClkIn	1	×		
3	DataIn	1	×		
47	Reserved	1	×		

Notes: Reserved register in P9, enabled in P10

5-122 Proprietary and Confidential **3D***la*

VideoTest

Name	Туре	Index	Format
VideoTest	Region Zero	0x180	Address

Control register

Bits	Name	Read	Write	Reset	Description
0,1	CRC	1	1	0x000	0 = Off 1 = Line
				0.0000	2 = Frame 3 = Complete
27	Reserved	1	×		

Notes:

VideoCRC[0-3]

Name	Туре	Index	Format
VideoCRC0	Region Zero	0x184	Integer
VideoCRC1		0x185	
VideoCRC2		0x186	
VideoCRC3		0x187	

Control register

Bits	Name	Read	Write	Reset	Description
07	Data	1	×	0xXX	
				XX.X	
				XXX	

Notes:

3D labs

VideoGPEvent

Name	Туре	Index	Format
VideoGPEvent	Region Zero	0x188	Bitfield

Control tegister

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0x000 0.XX X0	Signal GP on update
13	Source	√	√		0 = UnderlayReg - Reserved in P9 1 = UnderlayBuffer - Reserved in P9 2 = MainReg 3 = MainBuffer 4 = OverlayReg 5 = OverlayBuffer 6 = CursorReg - reserved in P9 7 = CursorBuffer - reserved n P9
47	Reserved	1	×		

Notes:

VideoLock[0-1]

Name	Type	Index	Format	
VideoLock0	Region Zero	0x190	Bitfield	
VideoLock1		0x191		

Control register

Bits	Name	Read	Write	Reset	Description
03	Reg	✓	✓	00000	Mask of channels that lock register loads
				<mark>0.0000</mark>	0 = Underlay – Reserved in P9
					1 = Main
					2 = Overlay
					3 = Cursor – Reserved in P9
<mark>47</mark>	<mark>Buffer</mark>				Mask of channels that lock buffer swaps:
					0 = Underlay – Reserved in P9
					1 = Main
					2 = Overlay
					3 = Cursor – Reserved in P9

Notes: Used to ensure synchronization between channels or heads. Two independent locks can be configured per head using **VideoLock0** and **VideoLock1**

5-124 Proprietary and Confidential **3D***la*

VideoDigitalPortControl

Name	Туре	Index	Format
Video Digital PortControl	Region Zero	0x1A0	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
02	Mode	1	1	0xXX	0 = Off	1 = Shared
				XX.X	2 = In0	3 = Out0
				000	4 = In1	5 = Out1
3	Channel0				0 = In	1 = Out
4	Channel1				0 = In	1 = Out
5	DoubleEdge				0 = Off	1 = On
6	Stereo				Head to output stereo signal	
7	StereoOutput				Output stereo sig	nal

Notes: This register is common across all heads

BlockControl[0-3]

Name	Туре	Index	Format
BlockControl0	Region Zero	0x1A4	Integer
BlockControl1		0x1A5	
BlockControl2		0x1A6	
BlockControl3		0x1A7	

Control register

Bits	Name	Read	Write	Reset	Description
0	TexturePipe0	1	1	0x000	
				0.0000	
1	TexturePipe1	1	1		
2	TexturePipe2	1	1		
3	TexturePipe3	1	1		
4	Memory	1	1		
	Controller1				
5	VideoOut1	1	1		

Notes: Common across all heads.

3D *labs* Proprietary and Confidential

FunctionalScanMode

Name	Туре	Offset	Format
FunctionalScanMode	Region Zero	0x1A8	integer

Control register

Bits	Name	Read	Write	Reset	Description
0	Clk	1	1	0x000	0 = Low
				0.0000	1 = High
1	Stop	1	1		0 = Off
					1 = On (stop all clocks except PClk)
2	Mode	1	1		0 = Off
					1 = On (enable PClk domain ring fence)
3	ScanEnable	1	1		0 = Off
					1 = On (clock data along scan chain)
4	TestRAM	1	1		0 = Off $1 = On$
5	TestShadow	1	1		0 = Off $1 = On$
6,7	Reserved	1	×		

Notes: Common across all heads

FunctionalScanMux[0-7]

Name	Туре	Index	Format
FunctionalScanMux0	Region Zero	0x1B0	Integer
FunctionalScanMux1		0x1B1	
FunctionalScanMux2		0x1B2	
FunctionalScanMux3		0x1B3	
FunctionalScanMux4		0x1B4	
FunctionalScanMux5		0x1B5	
FunctionalScanMux6		0x1B6	
FunctionalScanMux7		0x1B7	

Control register

Bits	Name	Read	Write	Reset	Description
07	Data	✓	✓	0x000 0.0000	

Notes: Common across all heads

5-126 Proprietary and Confidential **3D***la*

FunctionalScanIn[0-7]

Name	Туре	Index	Format
FunctionalScanIn0	Region Zero	0x1B8	Integer
FunctionalScanIn1		0x1B9	
FunctionalScanIn2		0x1BA	
FunctionalScanIn3		0x1BB	
FunctionalScanIn4		0x1BC	
FunctionalScanIn5		0x1BD	
FunctionalScanIn6		0x1BE	
FunctionalScanIn7		0x1BF	

Control register

Bits	Name	Read	Write	Reset	Description
07	Data	1	1	0x000 0.0000	Input to scan chain

Notes: Common across all heads

FunctionalScanOut[0-7]

Name	Туре	Index	Format
FunctionalScanOut0	Region Zero	0x1C0	Integer
FunctionalScanOut1		0x1C1	
FunctionalScanOut2		0x1C2	
FunctionalScanOut3		0x1C3	
FunctionalScanOut4		0x1C4	
FunctionalScanOut5		0x1C5	
FunctionalScanOut6		0x1C6	
FunctionalScanOut7		0x1C7	

Control register

Bits	Name	Read	Write	Reset	Description
07	Data	✓	✓	0x000 0.0000	Output of scan chain

Notes: Common across all heads

3D labs

FunctionalScanClock

Name	Туре	Index	Format
FunctionalScanClock	Region Zero	0x1C8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	VGAClk	1	1	0x01	Unsigned long
1	D0Clk	1	1		Unsigned long
2	D1Clk	1	1		Unsigned long
3	KClk	1	1		Unsigned long
4	MClk	1	1		Unsigned long

Notes: Common across all heads

PLL0Select

Name	Туре	Index	Format	
PLL0Select	Region Zero	0x1FF	Bitfield	
	C min to the			

Control register

Bits	Name	Read	Write	Reset	Description
0,1	RegSet	1	√	0x000 0.X00 1	0 = Disable 1 = Enable
27					
831	Unused	1	×		

Notes: Common across all heads

PLL0Control

Name	Туре	Index	Format
PLL0Control	Region Zero	0x200	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0x000	0 = Disable
				0.X00 1	1 = Enable
1,2	Ref				0 = Internal $1 = External$ $2 = PClk$
3	Lock	1	×		0 = Not locked $1 = Locked$
47	Reserved	1	×		

Notes: Common across all heads

5-128 Proprietary and Confidential **3D***la*

PLL0PreScaleA

Name	Туре	Index	Format
PLL0PreScaleA	Region Zero	0x201	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0x000	
				0.0011	

Notes: Common across all heads

PLL0FeedbackScaleA

Name	Type	Index	Format
PLL0FeedbackScaleA	Region Zero	0x202	Integer
	Control register		

Bits	Name	Read	Write	Reset	Description

Bits	Name	Read	Write	Reset	Description
07	Value	1	✓	0x001 1.1000	Holds LSB of tile address of overlay

Notes: Common across all heads

PLL0PostScaleA

Name	Туре	Index	Format
PLL0PostScaleA	Region Zero	0x203	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description	
02	Scale	✓	1		0 = Divide by 1.	
37	Reserved	1	X			

Notes: Common across all heads

3Dlabs Proprietary and Confidential

PLL0PreScaleB

Name	Туре	Index	Format
PLL0PreScaleB	Region Zero	0x204	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	✓	✓	0x000 0.0100	

Notes: Common across all heads

PLL0FeedbackScaleB

Name	Type	Index	Format
PLL0FeedbackScaleB	Region Zero	0x205	Integer
	Control tegister		

	Bits	Name	Read	Write	Reset	Description
0	7	Value	1	1	0x010	
					0.1111	

Notes: Common across all heads

PLL0PostScaleB

Name	Туре	Index	Format	
PLL0PostScaleB	Region Zero	0x206	Bitfield	

Control register

Bits	Name	Read	Write	Reset	Description
02	Scale	1	1		0 = Divide by 1.
37	Reserved	1	X		

Notes: Common across all heads

5-130 Proprietary and Confidential **3D***la*

PLL0PreScaleC

Name	Туре	Index	Format
PLL0PreScaleC	Region Zero	0x207	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

PLL0FeedbackScaleC

Name	Type	Index	Format	
PLL0FeedbackScaleC	Region Zero	0x208	Integer	

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	✓	✓	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

PLL0PostScaleC

Name	Туре	Index	Format
PLL0PostScaleC	Region Zero	0x209	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	Scale	✓	√	0xXX XX.X XXX	0 = Divide by 1.
37	Reserved	1	×		

Notes: Common across all heads

3D *labs* Proprietary and Confidential

PLL0PreScaleD

Name	Туре	Index	Format
PLL0PreScaleD	Region Zero	0x20A	Integer

Control register

	Bits	Name	Read	Write	Reset	Description
Ī	07	Value	1	1	0xXX	
					XX.X	
					XXX	

Notes: Common across all heads

PLL0FeedbackScaleD

Name	Туре	Index	Format
PLL0FeedbackScaleD	Region Zero	0x20B	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX XX.X	
				XXX	

Notes: Common across all heads

PLL0PostScaleD

Name	Type	Index	Format
PLL0PostScaleD	Region Zero	0x20C	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	Scale	✓	√		0 = Divide by 1.
37	Reserved	1	×		

Notes: Common across all heads

5-132 Proprietary and Confidential **3D***la*

PLL1Control

Name	Туре	Index	Format
PLL1Control	Region Zero	0x20D	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0x000	
				0.X00	
				0	
1,2	Ref	1	1		0 = Internal 1 = External
					2 = PClk
3	Lock	1	×		0 = Not locked. 1 = Locked
47	Reserved	1	×		

Notes: Common across all heads

PLL1PreScale

Name	Туре	Index	Format
PLL1PreScale	Region Zero	0x20E	Integer
	0 1 .		

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

PLL1FeedbackScale

Name	Туре	Index	Format	
PLL1FeedbackScale	Region Zero	0x20F	Integer	
	Control register	r		

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

3D *labs* Proprietary and Confidential

PLL1PostScale

Name	Туре	Index	Format
PLL1PostScale	Region Zero	0x210	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	Scale	1	1		0 = Divide by 1.
37	Reserved	1	×		

Notes: Common across all heads

PLL2Control

Name	Туре	Index	Format
PLL2Control	Region Zero	0x214	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0x000	0 = Disable
				0.X00	1 = Enable
				0	
1,2	Ref	1	1		0 = Internal 1 = External
					2 = PClk
3	Lock	1	×		0 = Not locked. $1 = Locked$
47	Reserved	1	×		

Notes: Common across all heads

PLL2PreScale

Name	Туре	Index	Format
PLL2PreScale	Region Zero	0x215	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

5-134 Proprietary and Confidential **3D***la*

PLL2FeedbackScale

Name	Type	Index	Format
PLL2FeedbackScale	Region Zero	0x216	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

PLL2PostScale

Name	Type	Index	Format
PLL2PostScale	Region Zero	0x217	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
02	Scale	1	1	0xXX XX.X XXX	0 = Divide by 1.
37	Reserved	1	×		

Notes: Common across all heads

PLL3Control

Name	Type	Index	Format
PLL3Control	Region Zero	0x218	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	✓	0x000 0.X00 0	0 = Disable 1 = Enable
1,2	Ref	1	1		0 = Internal 1 = External 2 = PClk
3	Lock	1	×		0 = Not locked. 1 = Locked
47	Reserved	1	×		

Notes: Common across all heads

3D *labs* Proprietary and Confidential

PLL3PreScale

Name	Type	Index	Format
PLL3PreScale	Region Zero	0x219	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

PLL3FeedbackScale

Name	Туре	Index	Format
PLL3FeedbackScale	Region Zero	0x21A	Integer

Control register

Bits	Name	Read	Write	Reset	Description
07	Value	1	1	0xXX	
				XX.X	
				XXX	

Notes: Common across all heads

PLL3PostScale

Name	Туре	Index	Format
PLL3PostScale	Region Zero	0x21B	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description	
02	Scale	1	1	0xXX XX.X XXX	0 = Divide by 1. 2 = Divide by 4. 4 = Divide by 16.	1 = Divide by 2.3 = Divide by 8.
37	Reserved	1	X		,	

Notes: Common across all heads

5-136 Proprietary and Confidential **3D***la*

5-137

ClkOutControl [P10]

Name	Туре	Index	Format
ClkOutControl	Region Zero	0x220	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	Mode	1	1	0x100 0.0001	0 = Disable 2 = Divide by 2	1 = Divide by 1 3 = Divide by 4
25	Source	/	/		0 = PClk 2 = PLL0 4 = PLL2 6 = VGAClk 8 = MClk 10 = D1Clk	1 = Reserved 3 = PLL1 5 = PLL3 7 = KClk 9 = D0Clk
6	Reserved	1	×			
7	Invert	1	1			

Notes: Common across all heads. Controls the clock output at the GenLockClkOut pin. Reserved register in P9, enabled in P10

VGACIkControl

Name	Туре	Index	Format
VGAClkControl	Region Zero	0x221	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	State	1	1	0x000	0 = Drive Low	1 = Drive High
				0.0000	2 = Run	3 = Reserved
2,3	Source	1	1		0 = DClk0	1 = DClk1
					2 = Reserved	3 = Reserved
4	Div2	1	1		0 = Off	1 = On
57	Reserved	1	×			

Notes: Common across all heads

3D labs

DClk0Control

Name	Туре	Index	Format
DClk0Control	Region Zero	0x222	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	State	1	1	0x000 0.1110	0 = Drive Low 2 = Run	1 = Drive High 3 = Reserved
24	Source	1	✓	0.1110	0 = PClk	1 = External
					2 = Reserved 4 = PLL1	3 = PLL0 $5 = PLL2$
					6 = PLL3	
5	Div2				0 = Off	1 = On
6,7	Reserved	1	×			

Notes: Common across all heads

DCIk1Control

Name	Туре	Index	Format
DClk1Control	Region Zero	0x223	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	State	1	1	0x000	0 = Drive Low	1 = Drive High
				0.1110	2 = Run	3 = Reserved
24	Source	1	1		0 = PClk	1 = External
					2 = Reserved	3 = PLL0
					4 = PLL1	5 = PLL2
					6 = PLL3	
5	Div2				0 = Off	1 = On
6,7	Reserved	1	×			

Notes: Common across all heads

5-138 Proprietary and Confidential **3D***la*

KClkControl

Name	Туре	Index	Format
KClkControl	Region Zero	0x224	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	State	1	1	0x000 0.0010	0 = Drive Low 2 = Run	1 = Drive High 3 = Reserved
24	Source	1	1	0.0010	0 = PClk 2 = Reserved 4 = PLL1 6 = PLL3	1 = External 3 = PLL0 5 = PLL2
5	Div2				0 = Off	1 = On
6,7	Reserved	1	×			

Notes: Common across all heads

MClkControl

Name	Туре	Index	Format
MClkControl	Region Zero	0x225	Bitfield

Control register

Bits	Name	Read	Write	Reset		Description
0,1	State	1	1	0x000	0 = Drive Low	1 = Drive High
				0.0010	2 = Run	3 = Reserved
24	Source	1	1		0 = PClk	1 = External
					2 = Reserved	3 = PLL0
					4 = PLL1	5 = PLL2
					6 = PLL3	
5	Div2				0 = Off	1 = On
6,7	Reserved	1	×			

Notes: Common across all heads

5.7.4 Memory Control

(0x03000 - 0x03FFF)

4 K

5-139

The following registers control the operation of the memory controller. The memory should be idle before any changes are made. This can be tested by checking the busy flag in the **MemoryControl** register. All registers are on 64 bit boundaries except the fifo registers which are packed to allow bursts. The register definitions show addresses in multiples of 32 bits.

5.7.4.1 DMA Controller

When a page fault is detected data will normally have to be transaferred from system memory to video memory. This may done directly by the CPU reading system data and writing it directly to the chip, or by programming the DMA controller. The sequence of operations to fix a fault will usually be:

- Fault detected.
- Cause of fault retrieved from PageControl fifo.
- Remedy determined, list of pages to be paged out and paged in constructed.

3Dlabs Proprietary and Confidential

Hardware Registers P9/P10Reference Guide Volume II

DMA and table update commands sent to PageControl fifo.

If the system memory used as source or destination of paging is not locked down then the CPU must handle the copy directly through the bypass. Table update commands should still be sent through the PageControl fifo to ensure correct ordering. All commands sent to the PageControl fifo take 4 dwords (1 AGP fast write). The format is:

Word	Bits	Description
1	01	Command
		0 = Table update
		1 = System to video DMA
		2 = Video to system DMA
		3 = Invalidate
	2	Interrupt on completion
	39	Reserved
	1031	Page
Command = T	able update	
2	031	Table entry
3	031	Table entry
Command = D	OMA (either	type)
2	05	Reserved
	67	Туре
		0 = Reserved
		1 = PCI
		2 = AGP
	811	Reserved
	1231	System page
3	031	System page
Command = In	nvalidate	
2	031	Reserved
3	031	Reserved
All commands		
4	07	Restart
	8. 15	Reserved
	1623	Suspend
	2431	Reserved

The first word holds the type of command in the lower 2 bits. The options are to modify a page table entry, to transfer data from system to video memory, to transfer data from video to system memory, or to invalidate the entries in the TLB (translation look-aside buffer, a cache of page table entries). An additional bit indicates that an interrupt should be raised when the command has completed. The upper bits of the first word hold a page number that this command will use.

5-140 Proprietary and Confidential **3D**/a

MemoryPageControlFifo[0-3]

Name	Туре	Offset	Format
MemoryPageControlFifo0	Region Zero	0x03000	Integer
MemoryPageControlFifo1		0x03004	
MemoryPageControlFifo2		0x03008	
MemoryPageControlFifo3		0x0300c	

Control register

Bits	Name	Read	Write	Reset	Description
031	Data	1	1	0x XXX	
				X.XX XX	

Notes: Writing to this register puts data into fifo, read gets data out. Used to control page downloads and modifications to table, and to report faults

MemoryPageControlFifoSpace

Name	Туре	Offset	Format
MemoryPageControl	Region Zero	0×03010	Bitfield
FifoSpace			

Control register

Bits	Name	Read	Write	Reset	Description
04	Space	1	1	0x000. 0008	
531	Reserved	1	×		

Notes:		

MemoryPageControlFifoCount

Name	Туре	Offset	Format
MemoryPageControl	Region Zero	0x03018	Integer
FifoCount			

Control register

Bits	Name	Read	Write	Reset	Description
04	Count	1	1	0x000. 0000	
531	Reserved	1	×	0000	

Notes:

3D*labs* Proprietary and Confidential 5-141

MemoryControl

Name	Туре	Offset	Format
MemoryControl	Region Zero	0x03020	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Busy	1	1	0x XXX X.XX XX	Set if the memory controller is still processing requests. This bit should tested and found clear before modifying any control registers
16	Reserved	1	×		
7	VideoMemory Width	✓	1		Selects 128 and 256 bus width. P9/P10 is usually configured with 256bit but can use 128bit. $0 = 128$ $1 = 256$
8	VideoDevice Type	1	1		VGA type selection: $0 = 16$ $1 = 32$
9	Internal Strobes	1	1		0 = Use external strobes 1 = Use internal clock as strobe
1031	Reserved	1	×		

Notes:

5-142 Proprietary and Confidential **3D***la*

MemoryTranslationEnable (

Name	Туре	Offset	Format
MemoryTranslation Enable	Region Zero	0x03028	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Bypass	1	1	0x000. 0000	Enables bypass read/write accesses
1	VGA/VIP'/ Texture	1	1		Controls Texture read accesses
2	Graphics Processor	1	1		Controls graphics core read/write accesses, apart from texture accesses
3	Command Processor	1	1		Controls the GPIO read accesses
4	Video Processor0	1	1		Control the read accesses made for video refresh
5	Video Processor1	1	1		Control the read accesses made for video refresh
631	Reserved [p10]	✓	×		
<mark>629</mark>	Reserved [P9]	√	×		
<mark>30,31</mark>	Segment [p9]	√	✓		Upper 2 bits of system address if translation disabled.

Notes:

The P9 virtual address range is 4GB of contiguous space. If virtual addressing is turned off the upper 2 bits of the address indicate the type of memory access (video memory, PCI, AGP) which reduces the range to 1GB. As system addresses can be above 1GB the segment bits suplement the address. They are only used when virtual addressing is OFF and are intended for debugging.

MemoryPageTableLower

Name	Type	Offset	Format
MemoryPageTableLower	Region Zero	0x03030	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	Туре	1	1	0x	0 = Video
				XXX	1 = System PCI
				X.XX	2 = System AGP
				XX	3 = Reserved
211	Reserved	1	×		
1231	Address				

Notes:

3D*labs* Proprietary and Confidential 5-143

MemoryPageTableUpper

Name	Туре	Offset	Format
MemoryPageTableUpper	Region Zero	0×03038	Bitfield

Control register

]	Bits	Name	Read	Write	Reset	Description
0	.31	Address	1	1	0x XXX	
					X.XX	
					XX	

Notes:

MemoryPageTableLimit

Name	Туре	Offset	Format
MemoryPageTableLimit	Region Zero	0x03040	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
021	Limit	1	1	0x XXX X.XX XX	The number of page table entries.
2231	Reserved	1	×		

Notes: Each entry is a 64-bit word detailing page address, access rights and so on. Max.virtual address is thus: (number of Entries) * (Page Size (4K))

MemoryCounter

Name	Туре	Offset	Format
MemoryCounter	Region Zero	0×03048	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
031	Timer	1	1	0x XXX	Free running counter at MClk frequency
				X.XX XX	

Notes:

5-144 Proprietary and Confidential **3D**/a

MemoryProfileControl

Name	Туре	Offset	Format
MemoryProfileControl	Region Zero	0×03050	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Mode	1	1	0x000 0.0000	0 = Reset 1 = Memory low power 2 = Memory idle 3 = Memory active 4 = Memory reads 5 = Memory writes 6 = Memory refreshes
4	Controller	1	1		Memory controller to read results from. Counters in both controllers always run but must be read from one at a time
531	Reserved	1	×		

Notes:

MemoryProfileCount

Name	Type	Offset	Format
MemoryProfileCount	Region Zero	0×03058	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
031	Count	1	✓	0x000 0.0000	

Notes:

3D *labs* Proprietary and Confidential

5-145

GPProfileControl

Name	Туре	Offset	Format
GPProfileControl	Region Zero	0×03060	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
07	Mode0	1	1	0x000 0.0010	For counter 0 (see below for modes)
815	Mode1	1	1		For counter 1 (see below for modes)
1623	Mode2	1	1		For counter 3 (see below for modes)
2431	Reserved	1	×		

Notes Modes

0 = Reset 1 = PageMiss (count of TLB misses)

2 = PageFault (count of page faults)3 = PageDMA (time spent loading pages by DMA)

4 = PageStall (time spent stalled due to TLB miss, fault reporting, page loading)

5 = VertexShadingIdle 6 = VertexShadingInputVertex

7 = GeomBlocked 8 = PrimSetUpPoints 9 = PrimSetUpLines 10 = PrimSetUpTriangles 11 = RasteriserStalled 12 = RasteriserIdle 13 = RasteriserTiles 14 = ContextCacheMiss

15 = ContextIsocChanges 16 = ContextGeomChanges

17 = GSDEarlyExit 18 = GSDSameTile 19 = LBCacheMiss 20 = PixelCacheMiss

21 = Texture Address Primary Cache Miss

22 = SecondaryTextureCacheMiss 23 = HostOutTile

24 = MemLBRead 25 = MemPixelRead 26 = MemTextureRead 27 = MemContextRead 28 = RectRasterizeTiles 29 = GPIO Context

30 = GPIO Message

GPProfileCount[0-3]

Name	Туре	Offset	Format	
GPProfileCount0	Region Zero	0x03068	integer	
GPProfileCount1		0x03070		
GPProfileCount2		0x03078		
GPProfileCount3		0x03080		

Control register

Bits	Name	Read	Write	Reset	Description
031	count	1	1	0x000 0.0010	

Notes:

5-146 Proprietary and Confidential **3D**/a

5-147

${\bf MVTiming A}$

Name	Туре	Offset	Format
MVTimingA	Region Zero	0x03088	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
04	RowCycle	1	1	0x XXX XXX XX	Minimum time between active RAS cycles to the same bank
59	RAS2CAS Write	1	1		Minimum time between RAS and CAS cycles to same bank
1014	RAS2CAS Read	1	1		Minimum time between RAS and CAS cycles to same bank
1519	CAS2RAS Write	1	1		Row precharge time + burst length
2024	CAS2RAS Read	1	1		Row precharge time + burst length
2529	RefreshCycle	1	1		Minimum time taken to complete refresh command
3031	Reserved	1	×		

Notes:

MVTimingB (

Name	Type	Offset	Format
MVTimingB	Region Zero	0x03090	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	RefreshEnable		,	0x	0 =f1 disable 1
U	KerresnEnable	1	•		0 = refresh disabled
				XXX	1 = refresh enabled
				X.XX	
				XX	
114	RefreshPeriod	1	1		Number of memory clocks between refresh cycles.
					Minimum value = 63
15	Reserved	1	×		
1620	Activate2	1	1		Minimum time between RAS cycles to different
	Activate				banks
2123	Write2Read	1	1		Delay from write cycle to read cycle. Equal to bus
					turnaround time + 1 + burst length/2
2427	Read2Write	1	1		Delay from read cycle to write cycle. Equal to CAS
					latency + 1 + bus turn-around time
2831	PowerDown	✓	×		Minimum time to repower memory array [P9]
	<mark>Exit</mark>				Reserved – set to 0 [P10]

Notes:

3D*labs*

MVCaps

Name	Туре	Offset	Format
MClkControl	Region Zero	0x03098	Bitfield
	a , ,		

Control register

Bits	Name	Read	Write	Reset	Description
0	LowPower	/	×	0x XXX X.XX XX	Reserved – set to 0 [P10] Low Power [P9]
1,2	Column Address	1	1	717	Number of bits of column address. 0 = 8 $1 = 92 = 10$ $3 = 11$
35	CAS latency	1	1		Determines the CAS latency expected by the memory controller. The CasLatency parameter can be loaded directly with the appropriate value from the memory device data sheet plus 1.
631	Reserved	1	×		•

Notes:

MVMode

Name	Туре	Offset	Format	
MVMode	Region Zero	0x030A0	Bitfield	

Control register

Bits	Name	Read	Write	Reset	Description
015	Mode	1	1	0x XXX X.XX XX	Bit pattern to load into mode register during initialization
1631	ExtendedMode	1	1		Bit pattern to load into extended mode register during initialization

Notes:

5-148 Proprietary and Confidential **3D***la*

MV0Clock

Name	Туре	Offset	Format
MV0Clock	Region Zero	0x030A8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Delay	1	1	0x XXX X.XX XX	4 bit field giving values 0 to 15 in 220ps taps. 0 = 0 delay 15 = 15 x 220ps delay
4	Invert	1	1		clock invert
631	Reserved	1	×		

Notes: To set a delay of 0.9ns, for example, would require more than 4 taps: of 220ps:

4 taps = 880 ps, not enough

5 taps = 1000 ps (1.0 ns)

MV0Strobelnvert

Name	Туре	Offset	Format
MV0StrobeInvert	Region Zero	0x030B0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
07	In0In7 [P9]	✓	✓	0x XXX	Strobe In delays in 2200s toos
015	In0In15 [P10]			X.XX XX	StrobeIn delays in 220ps taps
815	Reserved [P9]	✓	×		Reserved [P9]
1623	Out0Out7	✓	✓		StrobeOut delays in 220ps taps
1631	Out0Out15 [P10]	✓	✓		
2431	Reserved [P9]	✓	√		Reserved

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

3D*labs* Proprietary and Confidential 5-149

MV0StrobeOutDelay0

Name	Туре	Offset	Format
MV0StrobeOutDelay0	Region Zero	0x030B8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Delay0	1	1	0x	
	'			XXX	
				X.XX	
				XX	
47	Delay1	1	1		
811	Delay2	1	1		
1215	Delay3	1	1		
1619	Delay4	1	1		
2023	Delay5	1	1		
2427	Delay6	1	1		
2831	Delay7	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

MV0StrobeOutDelay1

Name	Туре	Offset	Format
MV0StrobeOutDelay0	Region Zero	0x030C0	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
031	Reserved [P9]	0	×	0x XXX X.XX XX	Reserved address in P9. Write has no effect, read as zero
03	Delay8	1	1	0x XXX XXX XX	
47	Delay9	1	1		
811	Delay10	1	1		
1215	Delay11	1	1		
1619	Delay12	1	1		
2023	Delay13	1	1		
2427	Delay14	1	1		
2831	Delay15	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

5-150 Proprietary and Confidential **3 D***la*

MV0StrobeInDelay0

Name	Туре	Offset	Format
MV0StrobeInDelay0	Region Zero	0x030C8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Delay0	/	1	0x	
				XXX	
				X.XX	
				XX	
47	Delay1	1	1		
811	Delay2	1	1		
1215	Delay3	1	1		
1619	Delay4	1	1		
2023	Delay5	1	1		
2427	Delay6	1	1		
2831	Delay7	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

MV0StrobelnDelay1

Name	Туре	Offset	Format
MV0StrobeInDelay0	Region Zero	0x030D0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
031	Reserved [P9]	0	×	0x XXX X.XX	Reserved address in P9. Write has no effect, read as zero
03	Delay8	1	1	0x XXX X.XX XX	
47	Delay9	1	1		
811	Delay10	1	1		
1215	Delay11	1	1		
1619	Delay12	1	1		
2023	Delay13	1	1		
2427	Delay14	1	1		
2831	Delay15	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

3Dlabs Proprietary and Confidential

5-151

MV1Clock

Name	Туре	Offset	Format
MV1Clock	Region Zero	0x030D8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Delay	1	1	0x	
				XXX	
				X.XX	
				XX	
4	Invert	1	1		
631	Reserved	1	×		

Notes:

MV1Strobelnvert

Name	Туре	Offset	Format
MV1StrobeInvert	Region Zero	0x030E0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
07	In0In7 [P9]	✓	✓	0x XXX	StrobeIn delays in 220ps taps
015	In0In15 [P10]			X.XX XX	
815	Reserved [P9]	✓	×		Reserved [P9]
1623	Out0Out7 [P9]	✓	√		StrobeOut delays in 220ps taps
<mark>1631</mark>	Out0Out15 [P10]	✓	√		
2431	Reserved [P9]	✓	✓		Reserved

Notes:

5-152 Proprietary and Confidential **3D***la*

MV1StrobeOutDelay0

Name	Type	Offset	Format	
MV1StrobeOutDelay0	Region Zero	0x030E8	Bitfield	

Control register

Bits	Name	Read	Write	Reset	Description
03	Delay0	1	1	0x	
	'			XXX	
				X.XX	
				XX	
47	Delay1	1	1		
811	Delay2	1	1		
1215	Delay3	1	1		
1619	Delay4	1	1		
2023	Delay5	1	1		
2427	Delay6	1	1		
2831	Delay7	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

MV1StrobeOutDelay1

Name	Туре	Offset	Format
MV1StrobeOutDelay0	Region Zero	0x030F0	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
031	Reserved [P9]	O	×	0x XXX X.XX XX	Reserved address in P9. Write has no effect, read as zero
03	Delay8	1	1	0x XXX X.XX XX	
47	Delay9	1	1		
811	Delay10	1	1		
1215	Delay11	1	1		
1619	Delay12	1	1		
2023	Delay13	1	1		
2427	Delay14	1	1		
2831	Delay15	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

3D*labs* Proprietary and Confidential 5-153

MV1StrobeInDelay0

Name	Туре	Offset	Format
MV1StrobeInDelay0	Region Zero	0x030F8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	Delay0	1	1	0x	
				XXX	
				X.XX	
				XX	
47	Delay1	1	1		
811	Delay2	1	1		
1215	Delay3	1	1		
1619	Delay4	1	1		
2023	Delay5	1	1		
2427	Delay6	1	1		
2831	Delay7	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

MV1StrobelnDelay1

Name	Туре	Offset	Format
MV1StrobeInDelay1	Region Zero	0x03100	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
031	Reserved [P9]	0	×	0x XXX X.XX XX	Reserved address in P9. Write has no effect, read as zero
03	Delay8	1	1	0x XXX XXX XXX	
47	Delay9	1	1		
811	Delay10	1	1		
1215	Delay11	1	1		
1619	Delay12	1	1		
2023	Delay13	1	1		
2427	Delay14	1	1		
2831	Delay15	1	1		

Notes: Delay chain per strobe out or strobe in to configure for varying memory types and layouts.

5-154 Proprietary and Confidential **3 D***la*

MVSystemControl

Name	Туре	Offset	Format
MVSystemControl	Region Zero	0x03108	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
07	TimeSlice	1	1	0x XXX X.XX XX	Sets the time in clocks between forced pre-emptions. Access to the PCI/AGP will normally be granted to the most efficient type of access from the perspective of the bus bandwidth, but this may be at odds with the the needs of the rest of the system so setting this to a low value will share access to the bus more fairly
815	Throttle	1	1		Sets the time between system accesses in clocks. Some systems do not operate efficiently if flooded with requests. Setting this value to greater than zero will insert wait states between requests to the PCI/AGP bus; the value should be set to approximately the balance the rate of generating requests with the rate at which they are serviced, and should account for both clock speed differences and the size of requests
16	FlipBypass	1	1		1
17	FlipVGA/ VIP/Texture	1	1		
18	FlipGraphics Processor	1	1		
19	FlipCommand Processor	1	1		
20	FlipVideoProce ssor0	1	1		
21	FlipVideo Processor1	1	1		
22	FlipTLB Update	1	1		
23	FlipPage Handler	✓	✓		
2431	Reserved	1	×		

Notes: MVSystemControl.Flip* reverses the priority of arbitration for the source.

3D labs

5-155

MVVideoControl

Name	Туре	Offset	Format
MVVideoControl	Region Zero	0x03110	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
07	Low	1	1	0x XXX X.XX XX	Sets the low threshold for display video requests. Increasing this value increases the amount of time the video will wait before making requests so increasing the potential bandwidth of units accessing memory.
815	High	√	1		Sets the high threshold for display video requests. Increasing this value increases the amount of time the video will wait before making high priority requests. It should be set to the highest value that does not result in video under-runs.
16	FlipBypass	1	1		
17	FlipVGA/ VIP/Texture	1	1		
18	FlipGraphics Processor	1	1		
19	FlipCommand Processor	1	1		
20	FlipVideo Processor0	1	1		
21	FlipVideo Processor1	1	1		
22	FlipTLB Update	1	1		
23	FlipPage Handler	1	1		
24	VideoPipe	1	1		Causes video requests to be taken into account during arbitration of requests from the graphics process
2527	Q	✓	1		Controls the number of requests that can be queued in the memory controller. The value should be set according to the relative clock frequencies of K and M clks to queue the minimum number that does not cause bubbles. The value must be non-zero (>0)
2831	Reserved	1	×		

Notes: MVVideoControl.Flip* reverses the priority of arbitration for the source.

5-156 Proprietary and Confidential **3D***la*

P9/P10 Reference Guide Volume II Hardware Registers

MPipeControl

Name	Туре	Offset	Format
MPipeControl	Region Zero	0x03118	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
03	GPQ	1	1	0x	
				XXX	
				X.XX	
				XX	
47	GPTum	1	1		
	Around)				
831	Reserved	1	×		

Notes:

5.7.5 VGA Control 0x04000 – 0x04FFF4 K

The VGA registers generally follow industry VGA conventions. The registers described below are not comprehensive but include all chip-specific variants accessible via VGA I/O and addressable memory (described here) together with the Index registers which support them (**GraphicsIndexReg**, **SequencerIndexReg**) and others.

As well as the standard fixed I/O addresses at OxA0000 through 0xBFFFF, the VGA Control registers are mapped into a 4K Byte space within Region Zero. This allows driver software to initialise the VGA Controller without having to make I/O Space accesses (which can be difficult under some operating systems).

5.7.5.1 General Registers

These non-proprietary VGA registers are provided here for convenience only. For further information on VGA registers see, for example, IBM document SA14-2413-00 titled *Video Graphics Adaptor (VGA) Core*.

3D*labs* Proprietary and Confidential

5-157

² VGA Control accesses through Region Zero are not affected by the **PciVgalOColorDecode** enable signal so both monochrome and color accesses are always forwarded to the VGA Unit provided the *VgaEnable* bit is set in the **CFGBusConfig** register..

3Dla

MiscOutputReg

Name	Туре	Offset	Format	
MiscOutputReg	VGA	0x3c2	Bitfield	
		0x3cc		

General VGA register

Bits	Name	Read	Write	Reset	Description
0	IOAddress	1	V	0x XXX X.XX XX	This bit selects the I/O address for either Monochrome (0) or Colour (1) modes. The registers which change their port address are: 0 CRTC IndexReg 0x3b4 CRTC DataReg 0x3b5 FeatureControlReg 0x3ba InputStatus1Reg 0x3ba 1 CRTC IndexReg 0x3d4 CRTC DataReg 0x3d5 FeatureControlReg 0x3d5 FeatureControlReg 0x3d5 FeatureControlReg 0x3da
1	Enable Ram	1	1		InputStatus1Reg 0x3da This bit controlles access to the display memory by the host. 0=No access to the display memory is made1. 1=Access to the display memory are made.
2,3	ClockSelect	/	1		These two bits control the frequency of the dot clock for video generation and are passed to an external clock synthesiser which generates the VClock. It is the programmers responsibility to ensure a clean transition by using the ResetRegister to force a reset state before changing the clock2.
4	Reserved	1	×		
5	PageSelect	1	1		This bit affects the meaning of the LSB of the Display Memory address when in Even/Odd mode (i.e. MemoryModeReg.EvenOdd = 1 and GraphicsMiscReg.ChainEvenOdd = 0 and MemoryModeReg.Chain4 = 0). In this case: 0=Odd memory locations are selected. 1=Even memory locations are selected.
6,7	SyncPolarity		V		These are dual purpose bits used to select screen size and the polarity of the sync signals. Screen size: 0

5-158 Proprietary and Confidential

P9/P10 Reference Guide Volume II Hardware Registers

Notes: 1. This signal is used by the external decode logic to enable/disable memory read and write decodes. When disabled no response is made to memory accesses in the VGA range.

- 2. Changing the clock (even using the ResetReg) is still likely to be a potentially dangerous thing to implement, giving rise to spikes and glitches so this needs to be actively taken into account in the implementation.
- 3. This is marked as reserved by other VGA chips, but it needs to be defined as doing something. These bits don't get used to set up the internal video timing and are only used to help control a multisync monitor.

FeatureControlReg

Name	Туре	Offset	Format	
FeatureControlReg	VGA	0x3ca	Bitfield	
		0x3?a		

General VGA register

Bits	Name	Read	Write	Reset	Description
02	Reserved	1	×	0x XXX X.XX XX	
3	VSyncControl	1	1		0 = Normal vertical sync 1 = The VSync signal is logically ored with DisplayEnable (an internal signal) before going to the RAMDAC.
47	Reserved	1	×		

Notes: "?" in offset address (port) == b when in Monochrome Mode (MiscOutputRegIOAddress=0) or == d when in Color Mode (MiscOutputRegIOAddress=1)

InputStatus0Reg

Name	Туре	Offset	Format
InputStatus0Reg	VGA	0x3c2	Bitfield

General VGA register

Bits	Name	Read	Write	Reset	Description
03	Reserved	1	×	0x	
				XXX	
				X.XX	
				XX	
4	SwitchSense	1	×		Always returns 0 as there are no switches to read
5,6	Reserved	1	×		
7	Vsync Interrupt	1	×		0=Vertical interrupt is clear
					1=Vertical interrupt is pending

Notes:

3D*labs* Proprietary and Confidential 5-159

Hardware Registers P9/P10Reference Guide Volume II

InputStatus1Reg

Name	Type	Offset	Format
InputStatus1Reg	VGA	0x3?a	Bitfield

General VGA register

Bits	Name	Read	Write	Reset	Description
0	DisplayEnable	1	×	0x XXX XXX XX	This bit follows the state of the DisplayEnable signal (HDisplayEnable & VDisplayEnable) from the video output stage. Note this signal spans clock domains. 0=Video is being displayed 1=Blanking is active
1,2	Reserved	1	×		1 Diamong is active
3	VSync	1	×		This bit follows the state of the VerticalSync signal from the video output stage. Note this signal spans clock domains. 0=Vertical retrace is not in progress
					1=Vertical retrace is in progress
4,5	Diagnostic	<i>y</i>	×		These bits follow two of the eight outputs of the Pixel FIFO. The selection is made according to ColourPlaneEnableReg VideoStatusMux. The value of this field selects the output (P7:P0) of the VData lines from the Video Timing Generator as follows1: VideoMuxSelect Bit 5 Bit 4 0 P2 P0 1 P5 P4 2 P3 P1 3 P7 P6
6,7	Reserved	1	X		10

Notes: •

- "?" in offset address (port) == b when in Monochrome Mode (MiscOutputRegIOAddress=0) or == d when in Color Mode (MiscOutputRegIOAddress=1)
- There is some disagreement between the VGA chips as to which bits are selected by this field. We have followed the majority (the Cirrus chip GD542 is the odd one out).
- A side effect of reading this register is to clear the attribute toggle flip flop.

5-160 Proprietary and Confidential **3 D***la*

DACReadIndexReg

Name	Туре	Offset	Format
DACReadIndexReg	VGA	0x3c7	Bitfield

General VGA register

Bits	Name	Read	Write	Reset	Description
07		×	1	0x XXX X.XX XX	This field holds the address of the entry in the RAMDAC LUT to be read when a read is done to the DACDataReg port. This index is automatically incremented on the conclusion of every third read to the DACDataReg.

Notes: •

- This register is in the RAMDAC so writes will just be passed through with the necessary protocol changes.
- This port address is used to return status when read so cannot be used to return the current index value. This functionality is imposed by the RAMDAC and accepted as part of the normal VGA behaviour.

DACWriteIndexReg

Name	Туре	Offset	Format	
DACWriteIndexReg	VGA	0x3c8	Bitfield	

General VGA register

Bits	Name	Read	Write	Reset	Description
07		1	1	0x	This field holds the address of the entry in the
0,		•	•	XXX	RAMDAC LUT to be written when a write is done
				X.XX	to the DACDataReg port. This index is
				XX	automatically incremented on the conclusion of every
					third write to the DACDataReg

Notes: • This register is in the RAMDAC so writes will just be passed through with the necessary protocol changes..

3Dlabs Proprietary and Confidential

5-161

P9/P10Reference Guide Volume II

DACDataReg

Name	Туре	Offset	Format
DACDataReg	VGA	0x3c9	Bitfield

General VGA register

Bits	Name	Read	Write	Reset	Description
07		✓	✓	0x	This field holds the LUT data for the RAMDAC.
				XXX	Before writing to this register, write the first (or only)
				X.XX	LUT index to DACWriteIndexReg . The next three
				XX	writes to this register, corresponding to Red, Green
					and Blue values are written to the LUT at the current
					write index value. The write index value is then
					incremented ¹ .
					Before reading this register write the first (or only)
					LUT index to DACReadIndexReg . The next three
					reads to this register will return the Red, Green and
					Blue values from the LUT at the current read index
					value. The read index value is then incremented

Notes: • This register is in the RAMDAC so writes will just be passed through with the necessary protocol changes

- At which point the new LUT data is written to the LUT in the RAMDAC (all three words at once, or individually) depends on the RAMDAC.
- The effect of mixing writes and reads part way through a colour triplet is not defined and again will be a function of the RAMDAC.
- Some RAMDACs impose a maximum rate at which their internal registers can be written to (by
 a host). There is nothing in any of the VGA chips with internal RAMDACs which indicates this
 is something for the programmer to take into account when updating the LUT (for example).
 Any time required by the RAMDAC is handled outside of the VGA core by the RAMDAC
 interface..

DACStateReg

Name	Type	Offset	Format
DACStateReg	VGA	0x3c7	Bitfield

General VGA register

Bits	Name	Read	Write	Reset	Description
0,1	LastAccess	1	1	0x XXX X.XX XX	These two bits return the current state of the RAMDAC and will always be the same. The two values are 0=A write operation is in progress or occurred last. 3=A read operation is in progress or occurred last
27	Reserved	1	×		

Notes: • This register is in the RAMDAC so writes will just be passed through with the necessary protocol changes..

5-162 Proprietary and Confidential **3D**/a

P9/P10 Reference Guide Volume II Hardware Registers

DACMaskReg

Name	Type	Offset	Format
DACMaskReg	VGA	0x3c6	Bitfield

General VGA register

Bits	Name	Read	Write	Reset	Description
07		1	1	0x XXX X.XX	This field holds a mask value which is applied to the 8 bit pixel data passed to the RAMDAC prior to it being used to index the look up table
				XX	

Notes: This register is in the RAMDAC so writes will just be passed through with the necessary protocol changes..

3D *labs* Proprietary and Confidential 5-163

5.7.5.2 Sequencer Registers

The sequencer registers mainly control the global clock and memory modes. They also contain all but one of the non-standard (i.e. extended) VGA registers:

- VGAControlReg assorted 3Dlabs-specific controls.
- o Locking registers lock the extended registers.
- o Bank switching registers enable bank switching of the 0xa0000/0xb0000 regions through the bypass.
- o Genlocking registers allow the VTG to be synchronized to an external video source.
- Scratch registers available for use as an information store.
- o Indirect base registers follow the state of the HIndirectBase signals from the PCI interface.
- Alternative timing registers intended for flat panels: they provide greater screen resolution and are protected from host interference.

Note: The following Sequencer registers are non-standard 3Dlabs additions: Sequencer Index 0x05 to Index 0x37

SequencerIndexReg

Name	Туре	Offset	Format	
SequencerIndexReg	VGA	0x3c4	Bitfield	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
05	Index			0x XXX X.XX XX	This index points to one of the sequencer registers which will get read or written on the next I/O access to the SequencerPort (0x3c5). The registers and their corresponding indices are: 0x00 ResetReg 0x01 ClockModeReg 0x02 MapMaskReg 0x03 CharacterMapSelectReg 0x04 MemoryModeReg 0x05 VGAControlReg 0x06 LockExtended1Reg 0x07 LockExtended2Reg 0x08 BankALowReg 0x09 BankAHighReg 0x00 BankBHighReg 0x0a BankBLowReg 0x0b BankBHighReg 0x0c PCIControlReg 0x0d HLockShiftReg 0x0d HLockShiftReg 0x0d GenLockControlReg 0x10 Ox1f ScratchRegs 0x20 Ox23 IndirectBaseRegs 0x24 AltHTotalLowReg 0x25 AltHDisplayEndLowReg 0x26 AltHBlankingStartLowReg 0x27 AltHBlankingEndLowReg 0x28 AltHSyncStartLowReg 0x20 AltVSplayEndLowReg 0x22 AltVSplayEndLowReg 0x24 AltVTotalLowReg 0x25 AltHSyncEndReg 0x26 AltVSplayEndLowReg 0x27 AltHSyncEndReg 0x28 AltVSplayEndLowReg 0x20 AltVSplayEndLowReg 0x21 AltVSplayEndLowReg 0x22 AltVSplayEndLowReg 0x23 AltVSplayEndLowReg 0x24 AltVSplayEndLowReg 0x25 AltVSplayEndLowReg 0x26 AltVSplayEndLowReg 0x27 AltVSplayEndLowReg 0x28 AltVSplayEndLowReg 0x29 AltVSplayEndLowReg 0x20 AltVSplayEndLowReg 0x21 AltVSplayEndLowReg 0x22 AltVSplayEndLowReg 0x24 AltVSplayEndLowReg 0x25 AltVSplayEndLowReg 0x26 AltVSplayEndLowReg 0x27 AltVSplayEndLowReg 0x28 AltVSplayEndLowReg 0x29 AltVSplayEndLowReg 0x20 AltVSplayEndLowReg 0x21 AltVSplayEndLowReg 0x22 AltVSplayEndLowReg 0x24 AltVSplayEndLowReg 0x25 AltVSplayEndLowReg 0x26 AltVSplayEndLowReg 0x27 AltVSplayEndLowReg 0x28 AltVSplayEndLowReg 0x29 AltVSplayEndLowReg 0x20 AltVSplayEndLowReg 0x21 AltVSplayEndLowReg 0x22 AltVSplayEndLowReg

5-164 Proprietary and Confidential

3Dla

P9/P10 Reference Guide Volume II Hardware Registers

				0x33 AltVOverflow3Reg 0x34 AltLineCompareLowReg 0x35 AltLineCompareHighReg 0x36 reserved 0x37 HeadSelectReg 0x38 0x3f None ¹
6,7	Reserved	1	×	

Notes: • This register is in the RAMDAC so writes will just be passed through with the necessary protocol changes..

ResetReg

Name	Туре	Offset	Format	
ResetReg	VGA	0x3c5	Bitfield	
		index 00		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0	AsyncReset	√	1	0x XXX X.XX XX	0=Places the logic in a safe state so a different dot clock can be switch in to control the video timing. The display is blanked and HSync and VSync placed in their quiescent state (depending on their respective polarity) ¹ , ² .
1	SyncReset	✓	1		1=Normal VGA operation. 0=Places the logic in a safe state so a different dot clock can be switch in to control the video timing. The display is blanked and HSync and VSync placed in their quiescent state (depending on their respective polarity) ² . 1=Normal VGA operation.
27	Reserved	1	×		

Notes:

- The exact use of these resets is a bit vague (in the VGA documentation), however the real use is to prevent corruption of the display memory when the clock frequency is changed by the MiscOutputReg.ClockSelect. In this design this is never a possibility as the clock domain for memory accesses is independent of the dot clock. How these signals interact with each other is not consistent between the VGA chips. The AsyncReset is treated as the SyncReset and either can be used (the IBM VGA does this).
- Not all VGA chips define this effect on the monitor signals but it is probably desirable otherwise a monitor can be driven in an undesirable way.

3 D*labs*

5-165

Hardware Registers P9/P10Reference Guide Volume II

ClockingModeReg

Name	Туре	Offset	Format	
ClockingModeReg	VGA	0x3c5	Bitfield	
		index 01		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0	Character Dot8_9	1	1	0x XXX X.XX XX	Controls how the dot clock is divided to produce the character clock ¹ . 0 Selects that each character has 9 dots horizontally. 1 Selects that each character has 8 dots horizontally.
1	Reserved	1	×		Reserved.
2.4	VideoLoad Control	y	1		This field determines how frequently the video shift registers are loaded: 0 Every character clock 1 Every other character clock 2 Every fourth character clock 3 Every fourth character clock
					Note this two bit field is not contiguous.
3	DotClock DivTwo	7	✓		This bit controls the relationship between the dot clock and the master clock (whose frequency is selected by MiscOutput . Clock Select). Use the master clock Divide the master clock by two
5	ScreenOff	1	1		This bit blanks the screen to prevent video access to the display memory so all the available bandwidth is devoted to the host. The bandwidth saving feature is not necessary in this design so is ignored, however the side effect is still used. 0=Normal operation. 1=The pixel colour is taken from the OverscanColourReg.
6,7	Reserved	1	×		

Notes:

- Most of the bits in this register are used in the video clock domain.
- This field is ignored when in Graphics mode (AttributeModeReg. GraphicsMode) and there is always 8 dots per character.

5-166 Proprietary and Confidential **3D***la*

P9/P10 Reference Guide Volume II Hardware Registers

MapMaskReg

Name	Туре	Offset	Format
MapMaskReg	VGA	0x3c5	Bitfield
		index 02	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
03	Mask	1	1	0x	These bits effectively act as a byte mask for memory
				XXX	writes:
				X.XX	Bit 0 controls the least significant byte
				XX	bit 3 controls the most significant byte.
47	Reserved	1	×		

Notes: Each byte is sometimes called a Map or Plane and each map has assigned functionality in different modes (i.e. in Text mode map 0 holds the character code, map 1 the attribute byte). A 0 in a bit position means that no write occurs to the corresponding byte

3D labs Proprietary and Confidential 5-167

CharMapSelectReg

Name	Туре	Offset	Format
CharMapSelectReg	VGA	0x3c5	Bitfield
		index 03	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0,1,4	CharMap SelectB	✓	1	0x XXX X.XX XX	Selects the "B" character set to use. See table in the notes section. These bits are renamed F0 (4), F1 (0) and F2 (1) to reflect the binary weighting they represent. Note: this three bit field is not contiguous.
5,3,2	CharMap SelectA	✓	×		Selects the "A" character set to use. See table below. These bits are renamed F0 (5), F1 (2) and F2 (3) to reflect the binary weighting they represent. Note: this three bit field is not contiguous.
6,7	Reserved	1	×		

Notes:	•	The select value determines the base offset of the map as follows:				
		Value	Offset			
		0	0K			
		1	16K			
		2	32K			
		3	48K			
		4	8K			
		5	24K			
		6	40K			
		7	56K			

- Bit 3 of the attribute byte normally controls the intensity of the foreground colour. This bit may
 be redefined to be a switch between character sets allowing 512 displayable characters. This
 switch is enabled whenever CharMapSelectA is different to CharMapSelectB and
 MemoryModeReg.ExtendedMemory is 1.
- The address of the character in plane 2 of the display memory is given by the concatenation of the three bit fields: [F2:0] [C7:0] [R4:0], where F is the active CharMapSelect value, C is the ASCII character code and R is the character row...

5-168 Proprietary and Confidential **3D**/a

P9/P10 Reference Guide Volume II Hardware Registers

MemoryModeReg

Name	Туре	Offset	Format	
MemoryModeReg	VGA	0x3c5	Bitfield	
		index 04		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0	Reserved	1	×		
1	ExtendedMem ory	1	1	0x XXX X.XX XX	Controls access to the display memory by the host. 0=The effective memory size is 64KBytes regardless of the actual installed memory. 1=Allows access to all the installed memory. Also enables character map selection in the CharMapSelectReg.
2	EvenOdd	/	/		0=Even host addresses will access planes 0 and 2 in the display memory (corresponds to bytes 0 and 2). Odd host addresses will access planes 1 and 3 in the display memory (i.e. the LSB of the host address selects between pairs of bytes). 1=The host address selects 32 bit words and the MapMaskReg determines which bytes get written. This bit is set to 0 for text modes and should have the be opposite state to GraphicsModeReg.EvenOdd field for consistent operation (programmer's responsibility). This bit only effect writes to the display memory by the host and the next bit (ChainFour) must be 0 for this bit to have any effect.
3	ChainFour	1	✓		0=No effect. 1=The LS two bits of the host address are used to select to byte to read or write from the display memory. The word address is taken from the remaining bits. This bit has priority over the previous EvenOdd bit. The ReadMapReg is ignored. This bit is only set when in mode 13 - 256 colour mode.
47	Reserved	1	×		

Notes: •

3D labs

5-169

P9/P10Reference Guide Volume II

VGAControlReg

Name	Туре	Offset	Format
VGAControlReg	VGA	0x3c5	Bitfield
		index 05	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0	EnableHost Memory Access	1	1	0x XXX X.XX XX	Controls access to the display memory by the host. 0=No access to the display memory is made in response to host VGA memory accesses. Writes are ignored and reads always return zero. All the host bus cycles are completed as normal. 1=Normal access to the display memory occurs. This bit is further qualified by the VGAEnable signal which acts as a global disable.
1	EnableHost DacAccess	✓	1		Controls access to the RAMDAC by the host. 0=No access to the RAMDAC is made in response to host Dac accesses. Writes are ignored and reads always return zero. All the host bus cycles are completed as normal. 1=Normal access to the RAMDAC occurs. This bit is further qualified by the VGAEnable signal which acts as a global disable.
2	Enable Interrupts	1	1		0=Prevents any interrupts from being generated by the VGA core. 1=Enables interrupt generation from the VGA core providing the VerticalSyncEndReg. Disable VerticalInterrupt field is set to zero. This bit is further qualified by the VGAEnable signal which acts as a global disable. This additional enable bit is provided so the VGA core can be disabled from one place.
3	EnableVGA Display	✓	V		Controls access to the display memory by the Memory Reader for the purpose of keeping the display refreshed. It also tells (on the VGAVidSelect signal) the video select logic external to the VGA core that the display should be driven from the VGA core. 0=No accesses to display memory are to be made and the video source should not be the VGA core. The Memory Reader, Attribute Controller and Video Timing Generator are held in their reset state. 1=Accesses to the display memory are made and the video to be displayed comes from the VGA core. This bit is further qualified by the VGAEnable signal
					which acts as a global disable
4	DacAddr2	1	1		which acts as a global disable. This bit extends the RAMDAC address range.

5-170 Proprietary and Confidential **3D***la*

P9/P10 Reference Guide Volume II Hardware Registers

6	EnableVTG	1	1	0=Stops the VTG running and producing sync
				pulses.
				1=Enables the VTG to run and produce sync pulses.
				This bit only has an effect when the VGA display has
				been disabled by EnableVGADisplay. When the
				display has been disabled by VGAEnable this bit is
				ignored. When the VGA dispaly is active then this
				bit is ignored.
7	InvertVBlank	1	×	0=No Invert VBlank.
				1=Invert VBlank

Notes:

- On reset EnableHostMemoryAccess, EnableHostDacAccess and EnableVGADisplay are enabled, EnableInterrupts is disabled and DacAddr2 and DacAddr3 bits are set to 0, InvertVBlank is set to 0.
- This is a non-standard (i.e. extended) VGA register

LockExtended1Reg LockExtended2Reg

Name	Туре	Offset	Format	
LockExtended1Reg	VGA	0x3c5	Bitfield	
LockExtended2Reg		index 06		
		index 07		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
07		×	1	0x	These 2 registers act as a lock for the extended
				XXX	registers.
				X.XX	
				XX	

On reset extended registers are locked – they cannot be written and read back as 0, and the sequencer index behaves as a 3-bit index. Writing the value 0x3d to **LockExtended1Reg** followed by 0xdb to **LockExtended2Reg** unlocks the extended registers. Writing any other values locks them

3D labs Proprietary and Confidential 5-171

3Dla

BankALowReg BankBLowReg

Name	Type	Offset	Format
BankALowReg	VGA	0x3c5	Bitfield
BankBLowReg		index 08	
S		index 0A	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
07	Bank [A or B]7_0	1	√	0x XXX X.XX XX	Holds the 8 low order bits of the 10-bit BankA base address.

Notes:

- The 2 high order bits can be found in BankAHighReg or BankBHighReg.
- The BankA and Bank B base addresses are used for bank switching the 0xa0000 and 0xb0000 regions through the bypass (if enabled).
- The BankA bits provide the HBankA signals to the PCI interface, the BankB bits provide the HBankB signals to the PCI interface.
- These fields should not be confused with the Mode640Reg Bank A and Bank B fields which are deprecated.

BankAHighReg BankBHighReg

Name	Туре	Offset	Format
BankAHighReg	VGA	0x3c5	Bitfield
BankBHighReg		index 09	
		index 0B	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0,1		1	1	0x XXX X.XX XX	Holds the 2 high order bits of the 10-bit BankB base address.
27	Reserved	1	×		

Notes:

- The 8 low order bits can be found in BankALowReg and BankBLowReg.
- The BankB base address is used for bank switching the 0xa0000 and 0xb0000 region through the bypass (if enabled).
- The BankA bits provide the HBankA signals to the PCI interface. The BankB bits provide the HBankB signals to the PCI interface.
- These fields should not be confused with the **Mode640Reg** Bank A and Bank B fields which are deprecated

5-172 Proprietary and Confidential

5-173

PCIControlReg

Name	Type	Offset	Format
DACWriteIndexReg	VGA	0x3c5	Bitfield
		index 0x0C	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0	BankE nable	1	1	0x XXX X.XX XX	If set, enables bank switching of the 0xa0000/0xb0000 regions through the bypass, using the 10-bit BankA/BankB base addresses. This bit provides the HBankEnable signal to the PCI interface.
1	Indirec tEnabl e	1	✓		If set, enables access to chip registers via I/O ports 0x3b0/0x3b1/0x3d0/0x3d1. This bit provides the HIndirectEnable signal to the PCI interface.
27	Reserved	1	×		

Notes:

HLockShiftReg

Name	Туре	Offset	Format
HLockShiftReg	VGA	0x3c5	Bitfield
		index 0E	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
07		1	1	0x XXX X.XX XX	If genlocking is enabled, this field specifies the number of characters by which the horizontal blank end is delayed

Notes:

VLockShiftReg

Name	Туре	Offset	Format	
VLockShiftReg	VGA	0x3c5	Bitfield	
		index 0E		

VGA Sequencer register

I	Bits	Name	Read	Write	Reset	Description
0	7		1	1	0x XXX X.XX XX	If genlocking is enabled, this field specifies the number of scanlines by which the vertical blank end is delayed

Notes:

3 D*labs* Proprietary and Confidential

GenLockControlReg

Name	Туре	Offset	Format	
GenLockControlReg	VGA	0x3c5	Bitfield	
		index 0F		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0x	Allows the VTG to be synchronized to an external
				XXX	video source via the GenLockHSync and
				X.XX	GenLock V Sync pins
				XX	
17	Reserved	1	×		

Notes: Enabling GenLock causes the horizontal & vertical sync starts & blank ends to be delayed. Sync starts are delayed until the arrival of the ExtHSync & ExtVSync signals. Blank ends are delayed by the numbers specified in the **HLockShiftReg** & **VLockShiftReg** registers.

ScratchReg[0x0-0xF]

Name	Туре	Offset	Format	
ScratchReg[[0x0-0xF]	VGA	0x3c5	Bitfield	
		index 10 to		
		index 1F		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
07		1	1	0x XXX X.XX XX	These registers are available for use as an information store and do not affect the VGA operation

Notes:

5-174 Proprietary and Confidential **3D**/a

IndirectBaseReg[0x0-0x3]

Name	Туре	Offset	Format
IndirectBaseReg[0x0-0x3]	VGA	0x3c5	Bitfield
		index 20 to index	
		23	

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
07		1	1	0x	These 4 registers follow the state of the
				XXX	HIndirectBase signals from the PCI interface.
				X.XX	IndirectBaseReg[0] returns bits 70,
				XX	IndirectBaseReg[1] returns bits 158,
					IndirectBaseReg[2] returns bits 2316, and
					IndirectBaseReg[3] returns bits 31. 24

Notes:			

HeadSelectReg

Name	Туре	Offset	Format	
HeadSelectReg	VGA	0x3c5	Bitfield	
		index 0x37		

VGA Sequencer register

Bits	Name	Read	Write	Reset	Description
0,1	DisplayHeadEn	1	1	0x	Condition the 2-bit VGAVidSelect signal.
	able			XXX	Bit 0 enables output to Head 0.
				X.XX	Bit 1 enables output to Head 1.
				XX	-
2	RamdacHead	1	1		Selects the display head for Ramdac accesses.
	Select				
37	Reserved	1	×		

Notes: Allows specific head enable/disable e.g. when changing dual head video mode. See the *Programmer's Guide* section on <u>Dual Head Video Output</u>.

5.7.5.3 CRTC Registers

The CRTC registers provide timing and control of video display characteristics such as .Display Start/End, Syncing and Blanking. These are non-proprietary registers and can be found in VGA reference manuals. See for example IBM document SA14-2413-00 titled *Video Graphics Adaptor (VGA) Core*

5.7.5.4 Graphics Registers

These are primarily non-proprietary VGA registers which are provided here for convenience only. For further information on VGA registers see, for example, IBM document SA14-2413-00 titled *Video Graphics Adaptor (VGA) Core.*

3D labs Proprietary and Confidential 5-175

Note: The following Graphics register is a non-standard 3Dlabs addition: Graphics Index 0x09 – **Mode640Reg.**

GraphicsIndexReg

Name	Туре	Offset	Format	
GraphicsIndexReg	VGA	0x3ce	Bitfield	

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
03	Index	Kead	white /	0x XXX X.XX XX	This index points to one of the Graphics registers which will get read or written on the next I/O access to the GraphicsPort (0x3cf). The registers and their corresponding indices are: 0x0
47	Reserved	/	×		0xf None1

Notes: Writes to a field denoted 'None' have no effect as the write is simply discarded. Reading from a field denoted 'None' returns zero

5-176 Proprietary and Confidential **3D***la*

SetResetReg

Name	Туре	Offset	Format
SetResetReg	VGA	0x3CF	Bitfield
		index 0x0	

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
03	Mask	1	1	0x XXX X.XX XX	This mask is the value written to the respective memory planes for Write Modes 0 and 3. Bit zero controls byte 0, the least significant byte. All eight bits in a plane or byte are written with the same value. This is described more fully in the WriteMode description
47	Reserved	1	×		

Notes:

SetResetEnableReg

Name	Туре	Offset	Format
SetResetEnableReg	VGA	0x3CF	Bitfield
		index 0x1	

VGA Graphics register

	Bits	Name	Read	Write	Reset	Description
03	3	Mask	1	1	0x XXX X.XX XX	These bits, together with SetResetReg .Mask determine the values written into the display memory when in Write Mode 0.
3	.7	Reserved	1	×		

Notes: If a bit in this field is set to 1 then the corresponding value in SetResetReg.Mask will be written into the corresponding display memory byte (all bits take the same value). If this bit is set to 0 then the corresponding value from the host data bus will be written into the corresponding display memory plane (all bits take the same value).

This is described more fully in the WriteMode description.

3D labs

Hardware Registers P9/P10Reference Guide Volume II

ColorCompareReg

Name	Туре	Offset	Format	
ColorCompareReg	VGA	0x3CF	Bitfield	
		index 0x2		

VGA Graphics register

	Bits	Name	Read	Write	Reset	Description
(03	Mask	1	1	0x XXX X.XX XX	These 4 bits provide the colour to compare each of the 8 four bit pixels read from display memory when in ReadMode 1
4	47	Reserved	1	×		

Notes:

DataRotateReg

Name	Туре	Offset	Format
DataRotateReg	VGA	0x3CF	Bitfield
		index 0x2	

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
02	RotateCount	✓	✓	0x	This field specifies the number of bit positions the
				XXX	host data is to be rotated right before being
				X.XX	submitted for further processing. This rotation only
				XX	occurs in WriteModes 0 and 3
3,4	FunctionSelect	1	1		This field specifies the logical operation between the
					host data (after rotation) and the data in the
					DataLatch.
					0=XOR
57	Reserved	1	×		

Notes:

5-178 Proprietary and Confidential **3D***la*

ReadMapSelectReg

Name	Туре	Offset	Format	
ReadMapSelectReg	VGA	0x3CF	Bitfield	
		index 0x4		

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
0,1	Select	1	1	0x XXX X.XX XX	Specifies the byte in display memory which is to be read by the host when in ReadMode 0. If MemoryModeReg. EvenOdd = 0 then bit 0 is ignored and the least significant bit of the address used instead. This field is ignored when the MemoryModeReg. ChainFour field is 1
27	Reserved	1	×		

Notes:

GraphicsMiscReg

Name	Type	Offset	Format	
GraphicsMiscReg	VGA	0x3CF	Bitfield	
		index 0x6		

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
0	GraphicsMode	1	1	0x XXX X.XX XX	0=Test 1=Graphics
1	ChainEven Odd	1	1		0=No chaining
2,3	MemoryMap	1	1		This field specifies the size and position of the visible display memory in the host address space. Value Start Address Length 0 0xa0000 128K 1 0xa0000 64K 2 0xb0000 32K 3 0xb8000 32K Accesses to the start address are translated to accesses in the display memory at address 0. This field is passed to the external address decoder so only the appropriate address range is decoded and passed to the VGA core.

Notes:

3D*labs* Proprietary and Confidential 5-179

P9/P10Reference Guide Volume II

ColorDontCareReg

Name	Type	Offset	Format	
ColorDontCareReg	VGA	0x3CF	Bitfield	
		index 0x7		

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
03	Mask	✓	✓	0x XXX X.XX XX	These four bits control whether the corresponding bit in a 4 bit pixel will take part in the colour compare operation. If a bit is 0 then the corresponding bit will not take part in the colour compare test and will consequently return a true result for this bit.
47	Reserved	1	×		

Notes:

BitMaskReg

Name	Туре	Offset	Format
BitMaskReg	VGA	0x3CF	Bitfield
		index 0x8	

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
07	Mask	1	1	0x XXX X.XX XX	Each bit in this field controls whether the corresponding bit in the display memory is written in WriteModes 0, 2 and 3. If a bit is 0 then the corresponding bit in display memory will not be written. It is the programmers responsibility to have read from the address already so its contents are in the DataLatch.

Notes:

5-180 Proprietary and Confidential **3D***la*

Mode640Reg

Name	Type	Offset	Format	
Mode640Reg	VGA	0x3CF	Bitfield	
		index 0x9		

VGA Graphics register

Bits	Name	Read	Write	Reset	Description
02	BankA[2:0]	1	1	0x XXX X.XX XX	This field provides the additional address bits needed when the horizontal screen resolution is 640 pixels and a host address is beign made to the 64K region starting at address 0xa0000.
35	BankB[2:0]	1	1		This field provides the additional address bits needed when the horizontal screen resolution is 640 pixels and a host address is beign made to the 64K region starting at address 0xb0000.
6	StartAddress16	1	1		The most significant bit of the StartAddress when mode 640 is enabled.
7	Enable	1	1		0=No action. 1=The VGA core operates in 640 resolution mode.

Notes: This is a non-standard (i.e. extended) VGA register which supports the 640 horizontal resolution modes used in SVGA

5.7.5.5 Attribute Registers

These are non-proprietary VGA registers. For further information on VGA registers see, for example, IBM document SA14-2413-00 titled *Video Graphics Adaptor (VGA) Core*.

5.7.6 ROM Control (0x05000 – 0x05FFF) (4KB)

This unit controls accesses to a serial ROM and any other devices sharing the same bus. The serial bus uses a standard 2-wire protocol that is compatible with ROMs such as Xicor 24512 and Atmel AT24C512; it is also used to control other devices such as TV encoders.

As many as 4 ROM devices can be fitted to the bus. Each is expected to be 64Kbytes and are consecutive in addressing. This allows more storage for situations where more than a simple VGA BIOS is needed (e.g. the UGA pCode). The chip configuration data is held at the end of the first 64K ROM.

If the ROM controller is used to access something other than a ROM, the CPU should use the ROMControl register to issue appropriate commands and read or write bytes of data according to the bus protocol. This mechanism uses the ROM pulse width and setup parameters as specified in the ROMTiming register, and the command field is returned to NOP when the operation is complete. Alternatively, setting the Override bit in the ROMControl register allows direct control of the SBClk* and SBData* pins using the Data in/out and Clock in/out fields to bypass the timing parameters..

At reset the PCI configuration unit reads setup data from the ROM assuming the dual-purpose UseROMConfig pin³. During reset the controller must be able to access the ROM without software assistance. Reads from the PCI unit are transferred through a FIFO - each read is for 32 bits converted into four byte reads. The ROM auto-incrementing address is used to improve performance.

Performance can also be improved by setting the timing parameters (pulse width and setup) in **ROMTIming** to values appropriate to the ROM. The reset timings are conservative and can be modified by the PCI configuration unit as part of the bootstrap (i.e. accurate timings are read from the ROM and then loaded into this unit).

The registers are aligned to 64 bit boundaries (i.e. the addressing units are 32 bits) with byte address offsets from the region base address.

3D*labs* Proprietary and Confidential 5-181

³ On P10 the UseROMConfig pin is *VidAVSync*. On P9 the UseROMConfig pin is VidInData(1). See the Reset and Pinlist chapters in *Reference Guide* Volume IV for more information.

Hardware Registers P9/P10Reference Guide Volume II

ROMTiming

Name	Туре	Offset	Format
ROMTiming	Region Zero	0x05000	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0 45	C 1	,		0.000	C . (DCI 1 1 f
015	Command	✓	✓	0x002	Count of PCI clocks for command operations (pulse
				0.0200	width)
1623	Data	1	1		Count of PCI clocks for data operations (setup and
					hold for data transfers)
2431	ReadBurst	1	1		Count of 32 bit reads that will be done to
					consecutive addresses

Notes:

- There are 3 fields: *Command, Data*, and *ReadBurst.* I2C defines different timing parameters for command and data transfers.
- Command should be loaded with the required pulse width; this value will also be used for command setup and hold (units PClks).
- Data should be loaded with required setup and hold for data transfers (units PClks).
- Burst is a special optimization. Load it with the number of 32 bit reads you intend to do from the ROM and it will burst that number at a higher speed. If burst is set to anything other than 0 you must always do a multiple of burst reads (because readburst is burst size minus 1).

5-182 Proprietary and Confidential **3D***la*

ROMControl

Name	Туре	Offset	Format
ROMControl	Region Zero	0x05008	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Override	1	/	0x000	0 = Normal operation
	Overnue	•	•	0.0000	1 = Drive SBClk and SBData pins direct from this
				0.0000	_
1 2	Command	,	,		register $0 = NOP \qquad 1 = Start$
13	Command	1	1		
					2 = Stop $3 = Read$
					4 = Write $5 = $ ReadAck
4	Busy	1	×		0 = Controller is idle
					1 = Access taking place
5	Error	1	1		Cleared by writing 1
					0 = Correct operation
					1 = Slave reported error during transaction
6	ClockIn	1	×		SbClk
7	DataIn	1	×		SBData
8	ClockOut	1	1		SBClk
9	DataOut	1	1		SBData
10	AckPolling	1	1		0 = Disabled 1 = Poll until ack received
1115	Reserved	1	×		
1623	ByteIn	1	1		
2431	ByteOut	1			

Notes: The Override field allows direct control of the SBClock and SBData pins.

Common across all heads

ROMSpinlock

Name	Туре	Offset	Format
ROMSpinlock	Region Zero	0x05010	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Lock	1	1	0x000	0 = Free
				0.0000	1 = Locked
131	ID	1	×		Read/write field holding ID of current user.

Notes:

5.7.7 Bypass Control (0x06000 - 0x06FFF) (4 KB)

The PCI Bypass control registers occupy a 4K section of Region Zero, and all the register offsets listed below are defined from the base of this 4K Bypass section. Writes to undefined registers in this 4K area will be discarded, and reads will return the value zero.

The write data bus to this unit is 128 bits wide. The Bypass control and status registers are placed on 256-bit boundaries to allow for future increases in bus width.

3D*labs* Proprietary and Confidential 5-183

Hardware Registers P9/P10Reference Guide Volume II

The PCI Bypass Unit connects the PCI bus with the P10 memory controller. It provides a "bypass" path around the graphics core, through which software can read and write local memory directly. The memory controller reads and writes 64bytes at a time from local memory. The PCI Bypass unit has the following functions:

- Combine writes from the bus interface to reduce memory bandwidth requirements.
- Track outstanding memory writes to determine when all data has reached memory.
- Cache read data from the memory to reduce subsequent bus interface read latency.
- Optionally convert between linear and planar byte tile memory accesses based on the bypass address.

Typically the Bypass path is used to download graphics commands into local memory, after which a write is made to a Graphics Core register to program it to fetch the downloaded commands.

5.7.7.1 Cache Control Registers

ByCacheFlush

Name	Туре	Offset	Format	
ResetStatus	Region Zero	0x06000	Integer	
	Control registe	r		

Bits	Name	Read	Write	Reset	Description
031	ByCacheFlush	1	1	0x000	Writes flush the cache
				0.000	Reads return zero

Notes: The PCI Router checks the BypassWriteComplete signal before accessing the Graphics Core or VGA
Units, and when BypassWriteComplete is not asserted the PCI Router automatically writes to the
ByCacheFlush register to flush buffered write data out to the memory and invalidate the read cache.
The PCI Router then waits for BypassWriteComplete to be asserted before starting the required access to the Graphics Core or VGA Unit. Reads from this register always return the value zero.

ByCacheStatus

Name	Type	Offset	Format
ByCacheStatus	Region Zero	0×06020	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
0	WriteBuffer	1	1	0x000	0 = bypass write buffer empty
	Status			0,0000	1 = buffer holding write data
1	ReadCache	1	✓		0 = bypass read cache empty
	Status				1 = cache holding valid data
27	Reserved	1	×		0=reserved
815	MemWrite	1	✓		Count of writes which have been issued to the
	Count				memory controller but have not yet completed (zero
					= all writes complete).
1631	Reserved	1	×		0=reserved

Notes: The **ByCacheStatus** register reports the status of the bypass read cache and write buffer and the number of memory writes which have been issued not yet completed. Write data is not guaranteed to have reached the memory until the bypass *writebufferstatus* is reported empty and *MemWriteCount* is zero

5-184 Proprietary and Confidential **3D**/a

ByCacheControl

Name	Туре	Offset	Format
ByCacheControl	Region Zero	0x06040	Bitfield

Control tegister

Bits	Name	Read	Write	Reset	Description
0	WriteBuffer	1	1	0x000	0 = bypass write buffer disabled
	Enable			00000	1 = bypass write buffer enabled
1	ReadCache	1	1		0 = bypass read cache disabled
	Enable				1 = bypass read cache enabled
231	Reserved	1	×		0=reserved

Notes: The **ByCacheControl** register controls the behaviour of the bypass cache. Writing any value to this register will flush all currently buffered write data out to memory and mark all cached data as invalid

3D*labs* Proprietary and Confidential 5-185

5.7.7.2 Region Control Registers

ByRegionFormat0 ByRegionFormat1 ByRegionFormat2 ByRegionFormat3 ByRegionFormat4 ByRegionFormat5 ByRegionFormat6 ByRegionFormat7

Name	Туре	Offset	Format	
ByRegionFormat0	Region Zero	0x06100	Bitfield	
ByRegionFormat1		0×06180		
ByRegionFormat2		0x06200		
ByRegionFormat3		0x06280		
ByRegionFormat4		0x06300		
ByRegionFormat5		0x06380		
ByRegionFormat6		0×06400		
ByRegionFormat7		0x06480		

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	✓	0	0 = Disable region 1 = Enable region
1,2	PixelSize	1	✓	X	0 = 8 bits 1 = 16 bits
					2 = 32 bits
3,4	ByteSwap	1	✓	X	0 = ABCD $1 = BADC$
					2 = CDAB $3 = DCBA$
57	Reserved	1	×		
815	MultiWrite	1	✓	X	Mask of regions to repeat writes to
	Mask				
1631	Reserved	1	×		Reserved, read as 0

Notes:

5-186 Proprietary and Confidential **3D***la*

5-187

ByRegionStart0 ByRegionStart1 ByRegionStart2 ByRegionStart3 ByRegionStart4 ByRegionStart5 ByRegionStart6 ByRegionStart7

Name	Туре	Offset	Format
ByRegionStart0	Region Zero	0x06120	Bitfield
ByREgionStart1		0x061A0	
ByREgionStart2		0x06220	
ByRegionStart3		0x062A0	
ByRegionStart4		0x06320	
ByRegionStart5		0x063A0	
ByRegionStart6		0x06420	
ByRegionStart7		0x064A0	

Control register

Bits	Name	Read	Write	Reset	Description
08	Reserved	1	×		
930	Address	1	✓	0x	Start address of region
				XXX	
				X.XX	
				XX	
31	Reserved	1	×		

Notes:

3D labs

ByRegionEnd0 ByRegionEnd1 ByRegionEnd3 ByRegionEnd4 ByRegionEnd5 ByRegionEnd6 ByRegionEnd7

Name	Туре	Offset	Format
ByRegionEnd0	Region Zero	0x06140	Bitfield
ByRegionEnd1		0x061C0	
ByRegionEnd2		0x06240	
ByRegionEnd3		0x062C0	
ByRegionEnd4		0×06340	
ByRegionEnd5		0x063C0	
ByRegionEnd6		0x06440	
ByRegionEnd7		0x064C0	

Control register

Bits	Name	Read	Write	Reset	Description
08	Reserved	1	×		
930	Address	1	1	0x	End address of region
				XXX	
				X.XX	
				XX	
31	Reserved	1	×		

Notes:

5-188 Proprietary and Confidential **3D***la*

5-189

ByRegionWidth0 ByRegionWidth1 ByRegionWidth2 ByRegionWidth3 ByRegionWidth4 ByRegionWidth5 ByRegionWidth6 ByRegionWidth7

Name	Туре	Offset	Format
ByRegionWidth0	Region Zero	0x06160	Bitfield
ByRegionWidth1		0x061E0	
ByRegionWidth2		0x06260	
ByRegionWidth3		0x062E0	
ByRegionWidth4		0x06360	
ByRegionWidth5		0x063E0	
ByRegionWidth6		0x06460	
ByRegionWidth7		0x064E0	

Control register

Bits	Name	Read	Write	Reset	Description
08	Reserved	1	×		
930	Address	1	1	0x XXX X.XX XX	End address of region
31	Reserved	1	×		

Notes:

5.7.8 Video Port Control 0x07000 – 0x07FFF (4K)

The Video Port implements a VESA Video Interface Port (VIP) master. The Video Port supports:

- ITU-R BT.656 video stream 8-bit @ 27MHz
- VIP1.1 port 8-bit @ 27Mhz
- VIP2 Level I port 8-bit @ 75MHz

The Video Port does not support:

- VIP1.1 or VIP2 host port
- VIP2 Level II or Level III video port

For further information see the Video chapter in the Reference Guide, Volume I.

5.7.8.1 Register Interface

The 4-Kbyte region defines 32-bit registers on 64-bit boundaries as follows.

3D*labs*

Hardware Registers P9/P10Reference Guide Volume II

Enable

Name	Туре	Offset	Format
Enable	Region Zero	0x07000	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0	When 0, VPUIClk is forced into reset. When 1, VPUIClk is taken out of reset
131	Reserved	1	×		0=reserved

Notes: Drives the corresponding PClk \rightarrow IClk signal. Resynchronized from PClk \rightarrow Iclk.

5-190 Proprietary and Confidential **3D***la*

Mode

Name	Туре	Offset	Format
Mode	Region Zero	0x07008	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description	
02	Reserved	/	×	0xXX XX.X XXX	Set to 0	
3	SkipData	1	1		0 = Empty cycles during active video are processed. 1 = Empty cycles during active video are discarded.	
4	HBStore	1	1		0 = Horizontal blanking data is discarded. 1 = Horizontal blanking data is stored.	
5	VBStore	1	1		0 = Vertical blanking data is discarded. 1 = Vertical blanking data is stored.	
6	Interlaced	✓	V		0 = Store video source as non-interlaced frames. The video source can be non-interlaced or interlaced. 1 = Store video source as interlaced frames. The video source must be interlaced.	
7	StartField	1	1		In interlaced video, this is matched against the EAV Field (F) bit to determine the 1st field in the frame.	
8	MaxIdx	1	√		Maximum index 0 = 1 buffer 1 = 2 buffers 2 = 3 buffers 3 = Reserved (3 buffers)	
1031	Reserved	1	×			

Notes: Not resynchronised from $PClk \rightarrow Iclk$.

3 D*labs*

SAVPos

Name	Туре	Offset	Format
SAVPos	Region Zero	0x07010	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
011	Pos	1	✓	0xXX XX.X XXX	SAV position, counted from 0 at the start of the horizontal blanking interval
1231	Reserved	1	×		

Notes: Not resynchronized from PClk \rightarrow Iclk.

EAVPos

Name	Туре	Offset	Format
SAVPos	Region Zero	0x07018	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
011	Pos	√	✓	0xXX XX.X XXX	EAV position, counted from 0 at the start of the horizontal blanking interval
1231	Reserved	1	×		

Notes: Not resynchronized from PClk \rightarrow Iclk.

5-192 Proprietary and Confidential **3D***la*

BufAddr[0..1][0..2]

Name	Туре	Offset	Format
BufAddr[01] [02]	Region Zero	0x07020, 0x0728	Bitfield
		0x07030, 0x0738	
		0x07040, 0x0748	

Control register

Bits	Name	Read	Write	Reset	Description
024	BufAddr	1	1	0xXX	Buffer address aligned to a 4-tile boundary
				XX.X	
				XXX	
2531	Reserved	1	×		

Notes: Not resynchronized from PClk \rightarrow Iclk.

Rdldx

Name	Туре	Offset	Format
RdIdx	Region Zero	0x07050	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	RdIdx0	1	1	0xXX	Read index (task 0).
				XX.X	
				XXX	
2,3	RdIdx1	1	✓		Read index (task 1).
431	Reserved	1	×		0=reserved

Notes: Resynchronized from PClk \rightarrow Iclk.

Wrldx

Name	Type	Offset	Format
WrIdx	Region Zero	0x07058	Bitfield

Status register

Bits	Name	Read	Write	Reset	Description
0,1	RdIdx0	1	×	0xXX	Read index (task 0).
				XX.X	
				XXX	
2,3	RdIdx1	1	×		Read index (task 1).
431	Reserved	1	×		0=reserved

Notes: Resynchronized from PClk \rightarrow Iclk. Reset value = undefined at chip reset, 0 at VPUIClk reset

3D*labs* Proprietary and Confidential 5-193

5.7.9 Video Head 1 Control (0x08000 - 0x08FFF) (4KB)

The Video Control registers are described above in <u>Video Head 0 Control</u> and in the *P10 Programmer's Guide*. Each of the two video heads in the current P10 implementation has its own 4K Byte control register space within Region Zero. Unless explicitly noted, each register in this list is repeated for each head in the system. Any reserved fields in a register should read back as zero.

5.7.10 Reserved (0x09000 – 0x0EFFF) (24KB)

5.7.11 GPIO Driver (0x0F000 – 0x0FFFF)

The 128-Kbyte address region is sub-decoded into a 4-Kbyte driver region and a 64-Kbyte user region. The 4-Kbyte driver region defines 32-bit registers on 64-bit boundaries.

ImsgReady[Drv,Iso]

Name	Туре	Offset	Format
ImsgReady[Drv,Iso]	Region Zero	0x0F000	Bitfield
		0x0F030	

Control register

Bits	Name	Read	Write	Reset	Description
0	Ready	1	×	0x1	0 = the message assembly is not ready to be written. 1 = the message assembly is ready to be written. Reset value = 1. Read-write access.
131	Reserved	1	×		Reserved.

NT - 4		
Notes:		

ImsgTag[Drv,Iso]

Name	Туре	Offset	Format	
ImsgTag[Drv,Iso]	Region Zero	0x0F008	Bitfield	
		0x0F038		

Control register

Bits	Name	Read	Write	Reset	Description	
09	Tag	1	1		Message tag.	
					Reset value = undefined.	
					Read-write access	
10,11	-	1	×		Reserved for future tag expansion.	
12,13	Size	1	1		Message size, in 32-bit data words – 1.	
					Reset value = undefined.	
					Read-write access.	
1431	-	1	×		Reserved.	

Notes:	

5-194 Proprietary and Confidential **3D**/a

ImsgData[0...3][Drv]

Name	Туре	Offset	Format
ImsgData[03][Drv]	Region Zero	0x0F010	Data
		0x0F018	
		0x0F020	
		0x0F028	

Control register

Bits	Name	Read	Write	Reset	Description	
031	Data	1	1		Message data.	
				Reset value = undefined.		
					Read-write access.	

Notes:

ImsgData[0...3][Iso]

Name	Туре	Offset	Format	
ImsgData[03][Iso]	Region Zero	0x0F040	Data	
		0x0F048		
		0x0F050		
		0x0F058		

Control register

Bits	Name	Read	Write	Reset	Description
031	Data	1	√		Message data. Reset value = undefined. Read-write access.

Notes:

3D labs

ScheduleUsr

Name	Туре	Offset	Format
ScheduleUsr	Region Zero	0x0F060	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0	0 = the user context scheduler is disabled and the driver input message port and circular buffer enabled. 1 = the user context scheduler is enabled and the driver input message port and circular buffer disabled.
1	Reserved	1	×		Reserved.
231	Timeout	1	✓	***	Time slice available to user contexts before preemption, in clocks. At 200 MHz, 230 clocks equal about 5 seconds.

Notes:

MagicWrPtrUsr

Name	Туре	Offset	Format
MagicWrPtrUsr	Region Zero	0x0F068	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
022	Reserved	1	X		Reserved
2230	Magic	1	1	***	Magic number required in the corresponding bits of the CBufWrPtrUsr
31	Reserved	1	×		Reserved

Notes:

5-196 Proprietary and Confidential **3D***la*

SuspendUsr

Name	Туре	Offset	Format
SuspendUsr	Region Zero	0x0F070	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
022	Reserved	1	×		Reserved
2230	Magic	1	1	***	Magic number required in the corresponding bits of the CBufWrPtrUsr
31	Reserved	1	×		Reserved

Notes:

CBufEnableBusyUsr[0..15]

Name	Type	Offset	Format
CBufEnableBusyUsr[015]	Region Zero	0x0F080	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0	When 0, the circular buffer is disabled. When 1, the circular buffer is enabled.
1	Busy	1	×	***	When 0, the circular buffer is idle, i.e. (RdPtr == WrPtr). When 1, the circular buffer is busy, i.e. (RdPtr!= WrPtr). Read-only access, but writing the register clears the read and write pointers, so clearing this bit.
2	RqBusy	1	×	***	When 0, the DMA engine is idle, i.e. (RqPtr == WrPtr). When 1, the DMA engine is busy, i.e. (RqPtr!= WrPtr). Read-only access, but writing the register clears the request and write pointers, so clearing this bit.
3	CtxtEnable	1	1	***	When 0, the context buffer is disabled. When 1, the context buffer is enabled. Reset value = undefined.
431	CtxtAddr	1	1	***	Context buffer address, in 64-byte tiles.

Notes: This accesses one register in an array of 16, indexed by address bits 11:8. This is locked while the circular buffer is busy.

3D labs

P9/P10Reference Guide Volume II

CBufAddrUsr[0..15]

Hardware Registers

Name	Туре	Offset	Format
CBufAddrUsr[015]	Region Zero	0x0F088	Bitfield

Control tegister

Bits	Name	Read	Write	Reset	Description
0,1	ByteSwap	1	×		Byte swap:
					0 = ABCD (no swap)
					1 = BADC
					2 = CDAB
					3 = DCBA
28	-	1	×		Reserved.
<mark>9</mark>	VideoMemHint	√	√		After address translation, the circular buffer address
	[p9]				will be in video memory, so break up the request in a
					more optimal way for the memory controller.
	Reserved [p10]	√	×		
1029	Addr	1	1	***	Circular buffer address, in 4-Kbyte pages, undefined
					reset value
30,31	Reserved [p9]	✓	×		Reserved
	Addr [p10]	/	✓	***	Continues address in bits 1029.

Notes: This accesses one register in an array of 16, indexed by address bits 11:8.

This is locked while the circular buffer is busy

5-198 Proprietary and Confidential **3D***la*

CBufEnableBusylso

Name	Туре	Offset	Format
CBufEnableBusyIso	Region Zero	0x0F090	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Enable	1	1	0	When 0, the circular buffer is disabled and the input message port enabled. When 1, the circular buffer is enabled and the input message port disabled. Read-write access.
1	Busy	1	×	***	When 0, the circular buffer is idle, i.e. (RdPtr == WrPtr). When 1, the circular buffer is busy, i.e. (RdPtr!= WrPtr). Read-only access, but writing the register clears the read and write pointers, so clearing this bit.
2	RqBusy	1	×		When 0, the DMA engine is idle, i.e. (RqPtr == WrPtr). When 1, the DMA engine is busy, i.e. (RqPtr!= WrPtr). Read-only access, but writing the register clears the request and write pointers, so clearing this bit.
331	Reserved	1	X		Reserved.

Notes: This is locked while the circular buffer is busy.

CBufAddrIso

Name	Туре	Offset	Format
CBufAddrIso	Region Zero	0x0F098	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0,1	ByteSwap	1	×		Byte swap: 0 = ABCD (no swap)
					1 = BADC 2 = CDAB
					3 = DCBA
2,9	Reserved	1	×		Reserved for future expansion.
1031	Addr	1	X	***	

Notes: This is locked while the circular buffer is busy.

3D*labs* Proprietary and Confidential 5-199

CBufWrPtrlso

Name	Туре	Offset	Format
CBufWrPtrIso	Region Zero	0x0F0A0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
010	Reserved	1	1	***	Circular buffer write-pointer, as an offset in words from the start.
20,21	Reserved	1	×		Reserved for future expansion.
2231	Reserved	1	×		Reserved

Notes: The write pointer is initialised to 0 when the circular buffer is enabled

CBufRdPtrlso

Name	Туре	Offset	Format
CBufRdPtrIso	Region Zero	0x0F0a8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
022	Reserved	1	×	***	Circular buffer read-pointer, as an offset in words from the start.
20,21	Reserved	1	×		Reserved for future expansion.
2231	Reserved	1	×		Reserved

Notes: The read pointer is initialised to 0 when the circular buffer is enabled

Commandidiso

Name	Type	Offset	Format
CommandIdIso	Region Zero	0x0F0B0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
029	CommandID	1	×	***	Value of the most recently processed CommandId
					message.
30,31	Reserved	1	×		Reserved

Notes:

5-200 Proprietary and Confidential **3 D***la*

5-201

SyncIdIso

Name	Туре	Offset	Format
SyncIdIso	Region Zero	0x0F0B8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
029	Sync	1	×	***	Value of the most recently processed Sync command
30,31	Reserved	1	×		

Notes:

OMsgReady

Name	Туре	Offset	Format
OMsgReady	Region Zero	0x0F0C0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
0	Ready	1	×	0	When 0, the output message is not ready to be read. When 1, the output message is ready to be read
131	Reserved	1	×		

Notes:

OMsgTag

Name	Type	Offset	Format
OMsgTag	Region Zero	0x0F0C8	Bitfield

Control tegister

Bits	Name	Read	Write	Reset	Description
09	Tag	1	×	***	Message Tag
10,11	Reserved	1	×		Reserved for future tag expansion
1231	Reserved	1	×		Reserved

Notes:

3D *labs* Proprietary and Confidential

OMsgData[0..3]

Name	Type	Offset	Format
OMsgData[03]	Region Zero	0x0F0D0	Data
		0x0F0D8	
		0x0F0E0	
		0x0F0E8	

Control register

Bits	Name	Read	Write	Reset	Description
031	Data	1	×	***	Message data

Notes:

MagicWrPtrUsr

Name	Туре	Offset	Format
MagicWrPtrUsr	Region Zero	0x0F068	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
022	Reserved	1	×		Reserved
2230	Magic	1	1	***	Magic number required in the corresponding bits of the CBufWrPtrUsr
31	Reserved	1	X		Reserved

Notes:

CommIntrMask

Name	Туре	Offset	Format
CommIntrMask	Region Zero	0x0F0F0	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
015	Mask	1	√	***	Pending interrupt mask. A per-context bit is set when a Command or Sync interrupt is asserted. Bits are cleared by writing a 1 to them.
1631	Reserved	1	×		

Notes:

5-202 Proprietary and Confidential **3D***la*

SyncMask

Name	Туре	Offset	Format
SyncIntrMask	Region Zero	0x0F0F8	Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
015	Mask	1	1	***	Pending interrupt mask. A per-context bit is set when a Command or Sync interrupt is asserted. Bits are cleared by writing a 1 to them.
1631	Reserved	1	×		

Notes:

5.7.12 GPIO User (0x10000 - 0x1FFFF)

CbufWrPtrUsr[0-15]

Name	Туре	Offset	Format
CbufWrPtrUsr[0]	Region Zero	0x10010	
CbufWrPtrUsr[1]		0x11010	
CbufWrPtrUsr[2]		0x12010	
CbufWrPtrUsr[3]		0x13010	
CbufWrPtrUsr[4]		0x14010	
CbufWrPtrUsr[5]		0x15010	
CbufWrPtrUsr[6]		0x16010	
CbufWrPtrUsr[7]		0x17010	
CbufWrPtrUsr[8]		0x18010	
CbufWrPtrUsr[9]		0x19010	
CbufWrPtrUsr[10]		0x1a010	
CbufWrPtrUsr[11]		0x1b010	
CbufWrPtrUsr[12]		0x1c010	
CbufWrPtrUsr[13]		0x1d010	
CbufWrPtrUsr[14]		0x1e010	
CbufWrPtrUsr[15]		0x1f010	

Status tegister

Bits	Name	Read	Write	Reset	Description
019	WrPtr	/	×	0xXX XX.X XXX	Circular buffer write-pointer, as an offset in words from the start. Reset value = undefined. Read-write access when the magic bits match, read-only otherwise.
20,21	-	1	×		Reserved for future expansion of preceding field.
2230	Magic	1	×		When written, these bits must match the corresponding bits set via the MagicWrPtrUsr. When read, these bits return 0.
31	Yield	1	×		When written with 0, the context finishes its timeslice (default behaviour). When written with 1, the context yields its timeslice (effectively forcing it to 0) at the next opportunity. When read, this bit returns 0.

3D *labs* Proprietary and Confidential

Notes: •	The write-pointer is initialised to 0 when the circular buffer is enabled.
•	This accesses one register in an array of 16, indexed by address bits 15:12.

CbufRdPtrUsr[0-15]

Name	Туре	Offset	Format
CbufRdPtrUsr[0]	Region Zero	0x10018	
CbufRdPtrUsr[1]		0x11018	
CbufRdPtrUsr[2]		0x12018	
CbufRdPtrUsr[3]		0x13018	
CbufRdPtrUsr[4]		0x14018	
CbufRdPtrUsr[5]		0x15018	
CbufRdPtrUsr[6]		0x16018	
CbufRdPtrUsr[7]		0x17018	
CbufRdPtrUsr[8]		0x18018	
CbufRdPtrUsr[9]		0x19018	
CbufRdPtrUsr[10]		0x1a018	
CbufRdPtrUsr[11]		0x1b018	
CbufRdPtrUsr[12]		0x1c018	
CbufRdPtrUsr[13]		0x1d018	
CbufRdPtrUsr[14]		0x1e018	
CbufRdPtrUsr[15]		0x1f018	

Status tegistet

Bits	Name	Read	Write	Reset	Description
019	RdPtr	1	×	0xXX	Circular buffer read-pointer, as an offset in words
				XX.X	from the start.
				XXX	Reset value = undefined.
					Read-only access.
20,21	Reserved	1	×		Reserved for future expansion of preceding field.
2231	Reserved	1	×		Reserved.

Notes:

5-204 Proprietary and Confidential **3D***la*

CommandIDUsr[0-15]

Name	Туре	Offset	Format
CommandIDUsr[0]	Region Zero	0x10020	
CommandIDUsr[1]		0x11020	
CommandIDUsr[2]		0x12020	
CommandIDUsr[3]		0x13020	
CommandIDUsr[4]		0x14020	
CommandIDUsr[5]		0x15020	
CommandIDUsr[6]		0x16020	
CommandIDUsr[7]		0x17020	
CommandIDUsr[8]		0x18020	
CommandIDUsr[9]		0x19020	
CommandIDUsr[10]		0x1a020	
CommandIDUsr[11]		0x1b020	
CommandIDUsr[12]		0x1c020	
CommandIDUsr[13]		0x1d020	
CommandIDUsr[14]		0x1e020	
CommandIDUsr[15]		0x1f020	

Status register

Bits	Name	Read	Write	Reset	Description
029	CommandId	1	×		Value of the most recently processed CommandId
					message.
					Reset value = undefined.
					Read-only access.
30,31	Reserved	×	×		Reserved.

Notes: This accesses one register in an array of 16, indexed by address bits 15:12

3D *labs* Proprietary and Confidential

SyncIDUsr[0-15]

Name	Туре	Offset	Format
SyncIDUsr[0]	Region Zero	0x10028	
SyncIDUsr[1]		0x11028	
SyncIDUsr[2]		0x12028	
SyncIDUsr[3]		0x13028	
SyncIDUsr[4]		0x14028	
SyncIDUsr[5]		0x15028	
SyncIDUsr[6]		0x16028	
SyncIDUsr[7]		0x17028	
SyncIDUsr[8]		0x18028	
SyncIDUsr[9]		0x19028	
SyncIDUsr[10]		0x1a028	
SyncIDUsr[11]		0x1b028	
SyncIDUsr[12]		0x1c028	
SyncIDUsr[13]		0x1d028	
SyncIDUsr[14]		0x1e028	
SyncIDUsr[15]		0x1f028	

Status tegistet

Bits	Name	Read	Write	Reset	Description
029	SyncId	1	×		Value of the most recently processed SyncId message. Reset value = undefined. Read-only access.
30,31	Reserved	×	×		Reserved.

Notes: This accesses one register in an array of 16, indexed by address bits 15:12

5.8 Memory Apertures 1 & 2

Access to memory apertures is controlled by the ApertureOne and ApertureTwo registers in Region Zero.

5.9 Expansion ROM

A region is provided for a standard 64 KByte PCI Expansion ROM. Code will never be executed directly from this ROM but will always be loaded into host memory before execution.

CFGBusConfig

Name	Туре	Offset	Format
CFGBusConfig	ROM	0xF0	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
0	BaseClassZero	1	1	See	0 = use the correct PCI BaseClass Code
				note	1 = force the PCI BaseClase Code to zero (backward
					compatible)
1	VgaEnable	1	1	See	0 = disable internal VGA subsystem
				note	1 = enable internal VGA subsystem

5-206 Proprietary and Confidential **3D**/a

2	VgaFixed	✓	1	See	0 = disable VGA fixed address decoding
				note	1 = enable VGA fixed address decoding
					(Fixed VGA address decoding is only active when
					both the VgaFixed and VgaEnable fields are set.)
					Bit 1
3	VgaNoAlias	1	1	See	0 = decode only 10 bits of VGA I/O addresses
				note	1 = decode all 32-bits of VGA I/O addresses
					Bit 2
4	SubClass3D	1	1	See	0 = set Display SubClass Code to "other display"
				note	when VGA disabled
					1 = set Display SubClass Code to "3D controller"
					when VGA disabled
5	RetryDisable	1	1	See	0 = enable PCI Retry using "Disconnect-Without-
				note	Data"
					1 = disable PCI Retry using "Disconnect-Without-
					Data"
6	DelayRd	✓	1	See	0 = enable Delayed PCI Read transactions
	Disable			note	1 = disable Delayed PCI Read transactions
7	DelayWr	1	1	See	0 = enable Delayed PCI Write transactions
	Disable			note	1 = disable Delayed PCI Write transactions
8	Rate1X	1	1	See	0 = device does not support 1X data transfer rate
	Capable			note	1 = device supports 1X data transfers (AGP only)
9	Rate2X	1	1	See	0 = device does not support 2X data transfer rate
	Capable			note	1 = device supports 2X data transfers (AGP or FW)
10	Rate4X	1	1	See	0 = device does not support 4X data transfer rate
	Capable			note	1 = device supports 4X data transfers (AGP or FW)
11	PciFWCapable	1	1	See	0 = device does not support PCI Fast Write
				note	transactions
					1 = device can accept PCI Fast Write (FW)
					transactions
12	Agp4G Capable	1	1	See	0 = the AGP bus master can only generate 32-bit
				note	addresses
					1 = the AGP master supports addresses above 4GB
					boundary
13	SbaCapable	✓	1	See	0 = device not capable of AGP sideband addressing
				note	1 = device can generate AGP sideband addressing
14	AgpRdEnable	1	1	See	0 = disable AGP read master operation
				note	1 = enable AGP read master operation
15	AgpWrEnable	1	1	See	0 = disable AGP write master operation
				note	1 = enable AGP write master operation
16	AutoCal Enable	1	1	See	0 = disable AGP output driver auto-calibration
				note	1 = enable AGP output driver auto-calibration
17	ShortReset	1	1	See	0 = generate normal reset pulse to rest of chip
				note	(functional mode)
					1 = generate short reset pulse to rest of chip (fast
					simulation only)
18	AgpAutoReset	1	1	See	0 = rely on software not to trigger a SoftReset until
				note	AGP Master idle
					1 = automatically terminate outstanding AGP requests
					on SoftReset
19	ByAutoFlush	1	1	See	0 = rely on driver software to ensure Bypass/Core
				note	synchronisation
					1 = automatically flush the Bypass when switching to
I		1			Core accesses

3D *labs* Proprietary and Confidential

20	FWDisc WithData	1	1	See note	0 = use "Disconnect-Without-Data" in PCI Fast Write mode
					1 = use "Disconnect-With-Data" for PCI Fast Write transfers
21	PciPrefetch	1	1	See	0 = disable internal prefetch of slave read data for
	Enable			note	Regions 1 and 2
					1 = enable internal prefetch of slave read data for
					Regions 1 and 2
22	Pci	1	×	See	This controls the Base Address Register
	Prefetchable			note	"Prefetchable" bits
					and cannot be altered once it has been loaded from ROM.
					0 = Base Address Regions 1 and 2 are not marked
					prefetchable
					1 = Base Address Regions 1 and 2 are both marked
					prefetchable
23	PciAddress64	1	×	See	0 = the PCI slave is located anywhere in 32-bit
				note	address space
					1 = the PCI slave is located anywhere in 64-bit
					address space
					[The PCI master can always use DAC to access 64-bit
					space]
2427	Base1AddrSize	1	×	See	Controls the size of Region 1, cannot be altered once
				note	it has been loaded from ROM See Base2AddrSize for
					values
2831	Base2AddrSize	1	×	See	Controls the size of Region 2, cannot be altered once
				note	it has been loaded from ROM.
					0x0 = not enabled
					0x1 = 128 KB
					0x2 = 256 KB
					0x3 = 512 KB
					0x4 = 1 MB
					0x5 = 2 MB
					0x6 = 4 MB
					0x7 = 8 MB
					0x8 = 16 MB
					0x9 = 32 MB
					0xA = 64 MB
					0xB = 128 MB
					0xC = 256 MB
					0xD = 512 MB
					0xE = 1 GB
					0xF = 2 GB

5-208 Proprietary and Confidential **3D***la*

Notes:

- The **BusConfig** register is normally loaded from the external expansion ROM and controls the configuration of the bus interface. Most of the fields in this register can be updated by PCI Configuration Space writes. This allows boot-time software to change the default power-up values, where this makes sense. The fields controlling Base Address region sizes and Base Address register widths are read-only, since it is not sensible to update these from software after power-up.
- The field names of this register are used throughout this document to indicate how other registers are initialised and configured. For example, the BaseClassZero field is used to control the contents of the CFGClassCode register. The abbreviation AgpCapable is used to indicate the logical OR of the Rate1XCapable, Rate2XCapable, and Rate4XCapable fields, and controls those PCI Fast Write and AGP capabilities which are independent of the data transfer rate.

Note: Before changing the AGPRate the AGP Master should be disabled (reqEnable = Off) or the result may be an undefined state.

The Reset value default is 0xBB180000 but can also be loaded from ROM

CFGFunConfig

Bits	Name	Read	Write	Reset	Description
0	MaxFunction	1	×	0	0 = only function zero is enabled (single function device) 1 = functions zero and one enabled (multi function device)
1, 2	Reserved	1	×	0	0 = reserved (for extending the MaxFunction field)
3	MultiUniq DevId	1	×	0	0 = all functions have the same Device ID 1 = each function has a unique Device ID
4	MultiShare IntLine	1	×	0	0 = every function has a separate Interrupt Line register 1 = all functions share a common Interrupt Line register
5	MultiBar1 Enable	1	×	0	0 = disable the Region One BAR for functions greater than zero 1 = all functions have the same size Region One as function zero
6	MultiBar2 Enable	1	×	0	0 = disable the Region Two BAR for functions greater than zero 1 = all functions have the same size Region Two as function zero
7	MultiAgp Capable	✓	×	0	0 = functions greater than zero do not implement AGP registers 1 = all functions have AGP registers when AGPCapable is one Unimplemented AGP registers are always Zero and Read Only.

3D labs

8	MultiShare	1	X	0	0 = every function has a separate AGP Command
	AgpCmd				register
					1 = all functions share a common AGP Command
					register
					This field has no effect when MultiAgpCapable is
					zero, in which case the
					AGP registers for functions greater than zero will be
					Zero and Read Only.
928	Reserved	1	×	0	
29, 30	RomAddrSize	1	×	0	This controls the size of the Expansion ROM Region.
					0x0 = 64 KB
					0x1 = 128 KB
					0x2 = 256 KB
					0x3 = 512 KB
31	AltDeviceId	1	×	0	0 = use "standard" Device IDs (starting from 0020h)
					1 = use "alternate" Device IDs (starting from 0022h)

Notes: The field names of this register are used throughout this document to indicate how other registers are initialised and configured. For example, the *MaxFunction* field is used to control the contents of the **CFGHeaderType** configuration register for each function.

The **FunConfig** register is normally loaded from the external expansion ROM and controls how the bus interface is configured for multi-function operation. This entire register is read-only, since it is not sensible to update the number of functions or **BaseAddress** Registers from software after power-up. The Reset value default is 0x000000000 but can be loaded from ROM

CFGDevConfig

Name	Туре	Offset	Format
CFG DevConfig	Config	0xEC	Bitfield
	Control register		

Bits	Name	Read	Write	Reset	Description
031	DevConfig	1	1	0	Generic Device configuration

Notes: The **DevConfig** register is normally loaded from the external ROM (see *Reference Guide* volume IV, Chapter 10, Reset) and contains configuration information for the rest of the device – it does not affect the behaviour of the bus interface. The output of this register is presented to the rest of the chip as a 32-bit configuration data bus, together with a "valid" flag indicating when the register been loaded. When **CFGDevConfig** is not loaded from the ROM, the "valid" flag is not asserted to the rest of the chip until the register has been loaded from software. This register can be read and written using PCI Configuration Space accesses, with the **CFGDevConfigMask** register providing a 32-bit write mask.

The Reset value default is 0x00000000 but can be loaded from ROM

5-210 Proprietary and Confidential **3D**/a

CFGDevConfigMask

Name Type Offset Format CFGDevConfigMask Config 0xE8 Bitfield

Control register

Bits	Name	Read	Write	Reset	Description
031	DevConfig	1	1	0	Generic Device configuration

Notes: The **DevConfigMask** register is normally loaded from the external ROM (see *Reference Guide* volume IV, <u>Chapter 10</u>, <u>Reset</u>) and contains the write mask for the **DevConfig** register. When a bit is set in the write mask, the corresponding bit in the **DevConfig** register is writeable. This configurable write mask reduces the need for device-specific masking to be included in the bus interface, while still providing write-protection for fields which should not be dynamically updated by software after power-up.

The Reset value default is 0xFFFFFFF but can be loaded from ROM

5.10 VGA Registers (0xA0000 - 0xBFFFF)

The bus interface can be configured to respond to the standard VGA-compatible Memory and I/O Space addresses using the <u>VgaFixed</u> bit in the **CFGBusConfig** register⁴, provided the internal VGA controller has been enabled using the <u>VgaEnable</u> bit in the same register. The bus interface will then respond to Memory Space addresses A0000h through BFFFFh, and also I/O Space addresses within the ranges 3B0h to 3BBh and 3C0h to 3DFh (and aliases of these I/O addresses when appropriately configured). These are all fixed addresses, unaffected by the base address registers in PCI Configuration Space.

It is also possible to access the VGA control registers through the relocatable Region Zero in PCI memory space, and the VGA memory through either of the relocatable local memory apertures (Regions One and Two).

5.10.1 Fixed address decoding

All 32 bits of a PCI Memory Space address are decoded to determine if a fixed memory address access is being made to the VGA Unit. The fixed memory VGA address range is divided into four 32 KByte sections, each of which has its own independent range decode enable from the VGA Unit. These enable signals are used to select which of the possible memory address sub-ranges are currently active – as far as the bus interface is concerned any combination of these sub-ranges can be active, depending on the mode of the VGA Core Unit:

VGA Unit Address Range Enable Signals							
VHDL Signal Name	Memory Address Range Enabled						
PciVgaMemA0Decode	1 = decode addresses 0xA0000 - 0xA7FFF						
PciVgaMemA8Decode	1 = decode addresses 0xA8000 - 0xAFFFF						
PciVgaMemB0Decode	1 = decode addresses 0xB0000 - 0xB7FFF						
PciVgaMemB8Decode	1 = decode addresses 0xB8000 - 0xBFFFF						

5.10.2 Memory Aperture Accesses

When the *VgaAccess* bit is set in either of the **ApertureOne** or **ApertureTwo** registers⁵, then all accesses to the relevant Region One or Region Two aperture will be forwarded to the VGA Unit rather than directly to the memory controller. Where the memory aperture is configured to be larger than the 128 KByte VGA memory size, then VGA memory space will be aliased within the total aperture address size.

3D*labs* Proprietary and Confidential

⁴ See the *PCI Config Unit Specification* for details of the CFGBusConfig register.

⁵ See the *PCI CSR Unit Specification* for details of the ApertureOne and ApertureTwo registers.

Hardware Registers P9/P10Reference Guide Volume II

VGA accesses using these relocatable memory apertures are not affected by the enables from the VGA Unit, but will always be forwarded to the VGA Unit provided the **VgaEnable** bit is set in the CFGBusConfig register.

5.10.3 Fixed I/O Addresses

The number of I/O address bits that are decoded by the bus interface depends on the *VgaNoAlias* configuration bit in the **CFGBusConfig** register. When *VgaNoAlias* is set, all 32 bits of I/O address are decoded. When *VgaNoAlias* is not set then only the bottom 10 bits of the address are decoded, and the bus interface responds to all I/O address aliases.

The exact I/O Space addresses which the bus interface should respond to is a function of the configuration and mode of the VGA Core Unit. Enable signals from the VGA Unit are used to select which of the possible I/O address sub-ranges are currently active. For example, in monochrome and color VGA modes a different subset of I/O ports must be enabled.

5-212 Proprietary and Confidential **3D**/a

VGA Unit Address Range Enable Signals						
VHDL Signal Name	Signal Value	I/O Addresses Decoded	Mode			
PciVgaIOColorDecode	0	0x3B4, 0x3B5, 0x3BA	Mono			
		0x3C0 - 0x3C2, $0x3C4 - 0x3CA$				
		0x3CC, 0x3CE, 0x3CF				
PciVgaIOColorDecode	1	0x3D4, 0x3D5, 0x3DA	Color			
		0x3C0 - 0x3C2, $0x3C4 - 0x3CA$				
		0x3CC, 0x3CE, 0x3CF				

5.10.4 Indirect VGA I/O Registers

The bus interface slave address decoder includes four registers which provide a mechanism to perform indirect accesses through VGA I/O Space. These registers occupy a special sixteen byte "VGA Indirect" region, which itself can only be accessed indirectly using a series of VGA byte (or word) I/O transactions. This is similar to the set of registers which are used to access any of Regions Zero, One, Two, and the ROM region indirectly through PCI Configuration Space.

The four VGA registers and their use are described first, followed by details of how to read and write these registers through VGA I/O Space together with examples.

31	24	16	8	0	_
reserved			IndirectByteEn	offset = 0h	
IndirectData					offset = 4h
IndirectAddr					offset = 8h
reserved				IndirectAccess	offset = Ch

The **IndirectAddr** register has the same format as the **CFGIndirectAddress** register in configuration space, specifying a region in its top three bits, and an offset within that region in the remaining bits. To make an indirect access, the **IndirectAddr** register is first loaded with the destination and the offset within that region.

For an indirect write, 32 bits of data are written into **IndirectData** and four byte enables into **IndirectByteEn**. A single byte write to the **IndirectAccess** register triggers the write. For an indirect read, a single byte read of the **IndirectAccess** register causes 32 bits of data to be read from inside the device, and loaded into the **IndirectData** register. Subsequent reads of the **IndirectData** register can be used to obtain the data without causing side effects to the rest of the device (allowing 32-bit indirect data to be read back using byte I/O transfers). Note that reads or writes to the IndirectAccess register must <u>always</u> be single-byte transfers.

5.10.5 Reading from a Region Zero register

The following examples show how to use the VGA Indirect registers to read and write internal registers. The I/O ports shown are the monochrome ports at 0x3B0 and 0x3B1. If the VGA Unit is in colour mode then the ports at 0x3D0 and 0x3D1 should be used instead. Byte accesses are shown in these examples, but word accesses to combine the offset and data would be valid (and potentially more efficient) except when accessing the IndirectAccess register.

The following code shows how to read the contents of the register at offset 0x1234 in Region Zero.

// write the indirect address 0x1234 to the internal **IndirectAddr** register

```
Addr = (0 << 29) \mid 0x1234
                                               // (0 << 29) selects Region 0
port(0x3B0) \leftarrow 0x08
                                               // select byte 0 of IndirectAddr
port(0x3B1) \leftarrow ((Addr >> 0) \& 0xFF)
                                               // load byte 0 of address & region
port(0x3B0) \leftarrow 0x09
                                               // select byte 1 of IndirectAddr
port(0x3B1) \leftarrow ((Addr >> 8) \& 0xFF)
                                               // load byte 1 of address & region
port(0x3B0) \leftarrow 0x0A
                                               // select byte 2 of IndirectAddr
port(0x3B1) ← ((Addr >> 16) & 0xFF)
                                               // load byte 2 of address & region
port(0x3B0) \leftarrow 0x0B
                                               // select byte 3 of IndirectAddr
```

3D labs Proprietary and Confidential 5-213

```
port(0x3B1) ← ((Addr >> 24) & 0xFF)
                                                // load byte 3 of address & region
// set the byte enables to read all four data bytes
port(0x3B0) \leftarrow 0x00
                                                // select IndirectByteEn
port(0x3B1) \leftarrow 0x0F
                                                // set all four byte enables
// trigger the read internally using byte read of IndirectAccess register
port(0x3B0) \leftarrow 0x0C
                                                // select IndirectAccess register
tempvar \leftarrow port(0x3B1)
                                     // throw away the return value
// IndirectData now contains the data so read it back one byte at a time.
port(0x3B0) \leftarrow 0x04
                                                // select byte 0 of IndirectData
                                                // read byte 0 of final data dword
Data0 \leftarrow port(0x3B1)
port(0x3B0) \leftarrow 0x05
                                                // select byte 1 of IndirectData
Data1 \leftarrow port(0x3B1)
                                                / read byte 1 of final data dword
port(0x3B0) \leftarrow 0x06
                                                // select byte 2 of IndirectData
Data2 \leftarrow port(0x3B1)
                                                // read byte 2 of final data dword
port(0x3B0) \leftarrow 0x07
                                                // select byte 3 of IndirectData
Data3 \leftarrow port(0x3B1)
                                     // read byte 4 of final data dword
FinalData = (Data3 << 24) | (Data2 << 16) | (Data1 << 8) | Data0
```

5.10.6 Writing to a Region Two Register

The following code shows how to write the value "Data" to offset 0x1234 in Region Two.

// write the indirect address 0x1234 to the internal IndirectAddr register

```
Addr = (2 << 29) \mid 0x1234
                                     // (2 << 29) selects Region 2
port(0x3B0) \leftarrow 0x08
                                                // select byte 0 of IndirectAddr
port(0x3B1) \leftarrow ((Addr >> 0) \& 0xFF)
                                                // load byte 0 of address & region
port(0x3B0) \leftarrow 0x09
                                                // select byte 1 of IndirectAddr
port(0x3B1) \leftarrow ((Addr >> 8) \& 0xFF)
                                                // load byte 1 of address & region
port(0x3B0) \leftarrow 0x0A
                                                // select byte 2 of IndirectAddr
port(0x3B1) \leftarrow ((Addr >> 16) \& 0xFF)
                                                // load byte 2 of address & region
port(0x3B0) \leftarrow 0x0B
                                                // select byte 3 of IndirectAddr
port(0x3B1) ← ((Addr >> 24) & 0xFF)
                                                // load byte 3 of address & region
// set the byte enables to write all four data bytes
port(0x3B0) \leftarrow 0x00
                                                // select IndirectByteEn
port(0x3B1) \leftarrow 0x0F
                                                // set all four byte enables
// load IndirectData with the data to be written, one byte at a time
port(0x3B0) \leftarrow 0x04
                                                // select byte 0 of IndirectData
port(0x3B1) \leftarrow ((Data >> 0) \& 0xFF)
                                                // load byte 0 of dword to write
                                                // select byte 1 of IndirectData
port(0x3B0) \leftarrow 0x05
port(0x3B1) \leftarrow ((Data >> 8) \& 0xFF)
                                                // load byte 1 of dword to write
port(0x3B0) \leftarrow 0x06
                                                // select byte 2 of IndirectData
port(0x3B1) \leftarrow ((Data >> 16) \& 0xFF)
                                                // load byte 2 of dword to write
port(0x3B0) \leftarrow 0x07
                                                // select byte 3 of IndirectData
port(0x3B1) \leftarrow ((Data >> 24) \& 0xFF)
                                                // load byte 3 of dword to write
// trigger the write internally using byte write of IndirectAccess register
port(0x3B0) \leftarrow 0x0C
                                     // select IndirectAccess register
port(0x3B1) \leftarrow 0x00
                                     // write any value to trigger the write
```

5-214 Proprietary and Confidential **3D**/a