

Reference Guide Volume IV -Physical Features

DRAFT

PROPRIETARY AND CONFIDENTIAL INFORMATION

3D*labs*[®]

Reference Guide Volume IV -Physical Features

PROPRIETARY AND CONFIDENTIAL INFORMATION

Issue 1

The material in this document is the intellectual property of **3D***labs*[®]. It is provided solely for information. You may not reproduce this document in whole or in part by any means. While every care has been taken in the preparation of this document, **3D***labs* accepts no liability for any consequences of its use. Our products are under continual improvement and we reserve the right to change their specification without notice. **3D***labs* may not produce printed versions of each issue of this document. The latest version will be available from the **3D***labs* web site.

3D*labs* products and technology are protected by a number of worldwide patents. Unlicensed use of any information contained herein may infringe one or more of these patents and may violate the appropriate patent laws and conventions.

3D*labs*® is the worldwide trading name of **3D***labs* Inc. Ltd.

3D*labs*, GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or registered trademarks of **3D***labs* Ltd., **3D***labs* Inc. Ltd or **3D***labs* Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of Microsoft Corp. in the United States and/or other countries. OpenGL is a registered trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and recognized.

© Copyright **3D***labs* Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com Web: http://www.3dlabs.com

3D*labs* Ltd. Meadlake Place Thorpe Lea Road, Egham Surrey, TW20 8HE United Kingdom Tel: +44 (0) 1784 470555 Fax: +44 (0) 1784 470699 **3D***labs* K.K. Shiroyama JT Mori Bldg 16F 40301 Toranomon Minato-ku, Tokyo, 105, Japan Tel: +81-3-5403-4653 Fax: +91-3-5403-4646

3D*labs* Inc. 480 Potrero Avenue Sunnyvale, CA 94086, United States Tel: +1 (408) 530-4700 Fax: +1 (408) 530-4701

Change History

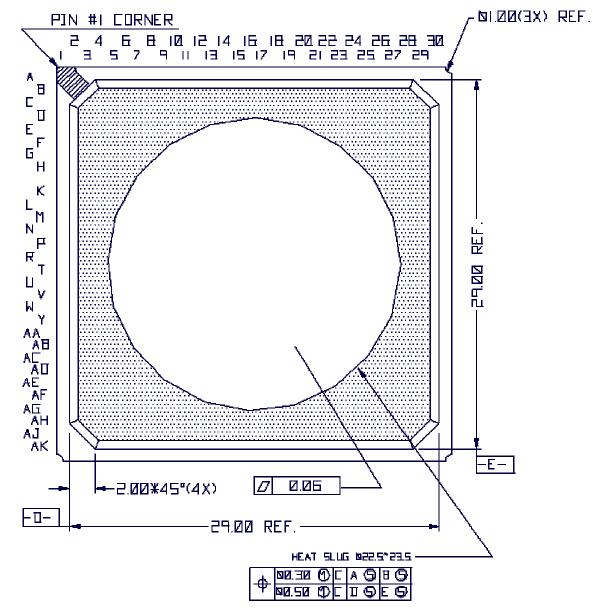
Document	Issue	Date	Change
xxx.3.4 01	1	11 feb 2002	Creation

User Note

This manual uses hyperlinks (in MSWord DOC file distributions only) to improve ease of access to relevant information for online users. For correct operation of hyperlinks the complete set of *Reference Guide* and *Programmer's Guide* files should be in a single Windows directory or folder.

Table of Contents

7	PACK	AGE DIAGRAMS	7-1
8	PIN AS	SIGNMENT	8-1
	8.1 Co	nfiguring AGP Pins for PCI boards	8-1
	8.2 Gro	ound and Power Pins	8-1
	8.2.1	Ground	8-1
	8.2.2	VCC2V5 and VDD1V2	8-1
	8.3 Pin	lists	8-2
	8.4 Pin	list by Name	8-2
	8.5 Pin	list by Number	8-13
	8.6 Scl	nematics	8-13
9	MEMO	RY	9-1
	9.1 Str	obe Setup	9-1
	9.1.1	DDR SDRAM	9-1
	9.1.2	DDR SGRAM	9-2
	9.1 Sys	stem Parameters	9-2
	9.1.1	Addressing	9-2
	9.1.2	Mode and Timing	9-2
	9.1.3	Mode	9-2
	9.1.4	Extended Mode Parameters	9-3
	9.1.5	Memory Control	9-3
	9.1.6	MVTimingA	9-3
	9.1.7	MVTimingB	9-4
	9.1.8	MVCaps	9-4
	9.1.9	MV0Clock	9-5
	9.1.10	MVOS trobeInvert	9-5
	9.1.11	MVOS trobeOutDelay{0-1} and MVOS trobeInDelay{0-1} (tQDQSS / tDS)	9-5
10	D RESET	-	10-1
11	THER	/AL	11-1
		ermal Performance	11-1
	11.2 Th	ermal Resistivity Equations	11-1
	11.2.1	Natural Convection	11-1
	11.2.2	Forced convection	11-2
	11.3 Co	oling	11-2
	11.4 Op	eration with Heatsink	11-2
	11.4.1	Heatsink Attachment	11-2
	11.4.2	Calculating cooling requirements	11-2
	11.4.3	Temperature Range (Commercial/Embedded Applications)	11-2
12	2 ELECT		12-1
		solute Maximum Ratings	12-1
		Specifications	12-1
	12.2.1	PCI Signal DC Specifications	12-2
	12.2.2	PCI Signal DC Specifications	12-2


Proprietary and Confidential

v

Contents

12.2.3	Non-PCI Signal DC Specifications	12-2
12.3 SS	TL_2 Class I Signals (DDR Memory Interface Only)	12-2
12.4 AC	Specifications	12-3
12.4.1	Clock Timing	12-3
12.4.2	PCI Clock Referenced Input Timing	12-3
12.4.3	PCI-Referenced Output Timing	12-3
12.4.4	AGP Referenced Output Timing	12-4
12.4.5	MEMCKOUT Referenced Input and Output Timing	12-4
13 ALERT	S AND ERRATA	13-2
13.1 ALE	ERT001	13-2
13.1.1	Problem	13-2
13.1.2	Software Workaround	13-2
13.2 P9	ERN001	13-2
13.2.1	Problem	13-2
13.2.2	Software Workaround	13-2
13.3 P9	ERN002	13-2
13.3.1	Problem	13-2
13.3.2	Software Workaround	13-2
13.4 P9	ERN003	13-3
13.4.1	Problem	13-3
13.4.2	Software Workaround	13-3

7 Package Diagrams

P9 is a 644-ball thermally-enhanced HSBGA package with 100 thermal balls, in a 31mm package.

Figure 7-1 Package Diagram Top View

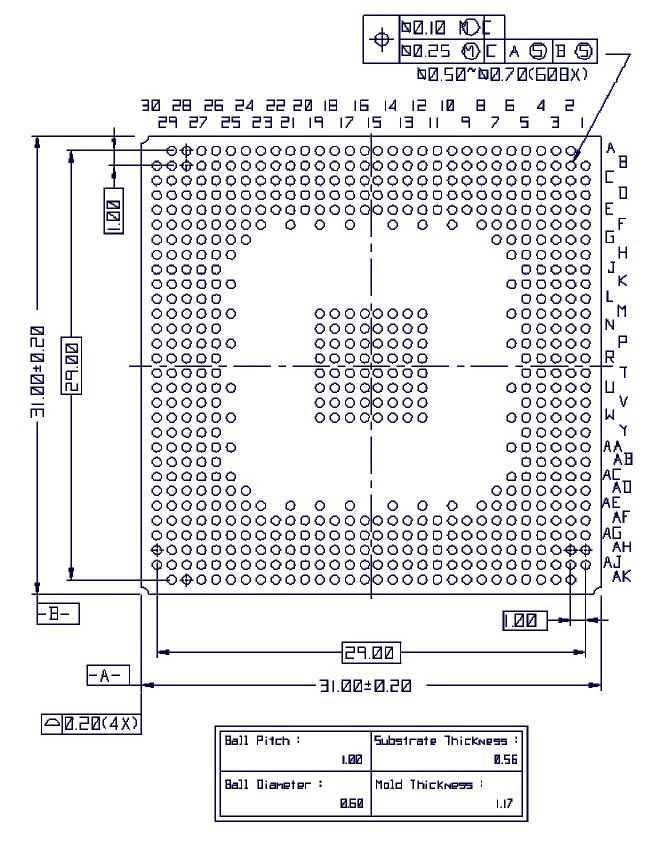


Figure 7-2 Ball pattern of 644L HSBGA

Figure 7-3 Package Profile Views

Description	Dimension		
Package Size	31.0 x 31.0 mm		
Die Size	10.7 x 10.7 mm		
Туре	HSBGA		
Body Height			
Substrate Layer	4L (2 oz)		
Ball pitch	1.00 mm		
Ball pad opening	0.6 mm		

Table 7-1 Package dimensions and characteristics

8 Pin Assignment

8.1 Configuring AGP Pins for PCI boards

The table below shows pin configuration for AGP pins used in a PCI-bus environment.

Note:	It is also usually recommended to tie ADSTB and ADSTBN to eliminate possible floating and
	noise.

Pin Name	Value
AGPSTB	NC
AGPSTBN	NC
AGPSBA[7:0]	NC
AGPST[2:0]	Pull high to 3.3V with 4.7K resistor
AGPADSTB[1:0]	Pull high to 3.3V with 4.7K resistor
AGPADSTBN[1:0]	Pull low to GND with 4.7K resistor
AGPIPEN	NC
AGPRBFN	NC
AGPWBFN	NC
VDDQ[5:0]	3.3V Plane
AGP3V3[4:0]	3.3V Plane
AGPVDet	GND
AGPVref	Set = PCI voltage/2
AGPZset	NC

8.2 Ground and Power Pins

8.2.1 Ground

At the following pins, Core and I/O ground supply = 0v:

A10, A22, A28, A3, A4, AA25, AA30, AA5, AA6, AB3, AB4, AB5, AC1, AC4, AD5, AE10, AE12, AE14, AE17, AE19, AE21, AE26, AE28, AE5, AE3, AE4, AF10, AF11, AF12, AF13, AF14, AF15, AF18, AF19, AF21, AF22, AF24, AF25, AF26, AG13, AG14, AG27, AG30, AG5, AG3, AG4, AH29, AH30, AH4, AJ14, AJ21, AJ28, AJ3, AJ9, AK20, AK3, AK4, B3, B7, C14, C17, C3, C30, E22, E28, E7, F10, F14, F17, F21, F26, F3, J1, J30, K25, K6, M1, M6, P25, P28, P6, R1, T28, U25, U28, U4, U5, U6, V1, V4, V5, W6, Y3, Y4, Y5.

8.2.2 VCC2V5 and VDD1V2

The following VCC2V5 pins are driven at 2.50vdc nominal:

F5, B1, A2, B2, E5, E8, A9, C12, F12, E15, E16, C19, F19, E23, A24, B26, A29, B30, B29, E26, H30, H26, M28, M25, R26, T26, W28, W25, AB30, AC26, AJ30, AK29, AJ29.

The following VDD1V2 pins are driven at 1.20vdc nominal:

AE6, AD6, AD7, AC6, H6, G6, F6, F7, G7, F8, F23, F24, F25, G25, G24, H25, AC25, AD25, AE25, AE24, AD24, AE23, AE8, AE7.

8.3 Pinlists

The tables below provides a brief description of each pin organized alphabetically by name and numerically by pin number.

All pins are listed here. For specifics of pin electrical characteristics refer to chapter 10, <u>Electrical</u> <u>Characteristics</u>.

The pin type definitions used are:

I/O: Input Signal (tolerates 2.5 and 3.3 VDC PCI and AGP4X standards)

PWR: Various power feed types

BIDIR: Bidirectional signals

IN, OUT Directional signals

Pins added since P10 are shown on a shaded background. There are numerous deletions, reflecting for example the use of only one DDC pair and one Sync pair per head (servicing both DFP and analog ports).

8.4 Pinlist by Name

PIN NAME	LOC	ATION	TYPE	DESCRIPTION
AGP3V3[0]	AK	21	PWR	3.30vdc nominal
AGP3V3[1]	AF	17	PWR	3.30vdc nominal
AGP3V3[2]	AK	28	PWR	3.30vdc nominal
AGP3V3[3]	AK	8	PWR	3.30vdc nominal
AGP3V3[4]	AK	14	PWR	3.30vdc nominal
AGPADSTB[0]	AJ	25	IN	AD_STB0 (agp only)
			IN	AD_STB0/1# (agp only) AD strobe - used
AGPADSTB[1]	AJ	17		in agp4x only (1.5v)
			IN	AD_STB0/1#(agp only)AD strobe-used in
AGPADSTBN[0]	AH	25		agp4x only[1.5V]
			IN	AD_STB0/1#(agp only)AD strobe-used in
AGPADSTBN[1]	AH	17		agp4x only[1.5V]
			OUT	PIPE#-Pipelined request(agp only)[3.3V]
AGPPipeN	AH	10		
			BIDIR	RGF# Read buffer full (AGP only) (3.3v)
AGPRbfN	AK	11		
			OUT	SBA(7:0)-Sideband address port(agp
AGPSBA[0]	AJ	11	OUT	only)[1.5-3.3V]
	A 1 1	11	OUT	SBA(7-0) sideband address port (agp
AGPSBA[1]	AH	11	OUT	only) (1.5-3.3v) SBA(7-0) sideband address port (agp
AGPSBA[2]	AK	12	001	only) (1.5-3.3v)
	/	12	OUT	SBA(7-0) sideband address port (agp
AGPSBA[3]	AG	11	001	only) (1.5-3.3v)
			OUT	SBA(7:0)-Sideband address port(agp
AGPSBA[4]	AK	13		only)[1.5-3.3V]
			OUT	SBA(7:0)-Sideband address port(agp
AGPSBA[5]	AG	12		only)[1.5-3.3V]
			OUT	SBA(7:0)-Sideband address port(agp
AGPSBA[6]	AJ	13		only)[1.5-3.3V]
			OUT	SBA(7:0)-Sideband address port(agp
AGPSBA[7]	AH	13		only)[1.5-3.3V]

PIN NAME	LOCATION		TYPE	DESCRIPTION	
			OUT	SB_STB Sideband strobe (agp only)-	
AGPSBSTB	AJ	12		(differential in AGP4x)[1.5V-3.3V]	
			OUT	SB_STB# Sideband strobe (agp only)	
				differential strobe used in agp4x only	
AGPSBSTBN	AH	12		(1.5v).	
AGPSt[0]	AK	10	BIDIR	ST Status bus (agp only) (1.5-3.3v)	
AGPSt[1]	AG	9	BIDIR	ST Status bus(agp only)[3.3V]	
AGPSt[2]	AJ	10	BIDIR	ST Status bus (agp only) [3.3V]	
			BIDIR	AGP I/O Reference voltage = VCCA 15/2	
AGPVREF	AK	27		(1.67v or 0.75v)	
AGPWbfN	AG	10	IN	Write Buffer Full signal	
			IN	Analog reference impedance(resistor)-	
AGPZSET	AF	20		connect to VDDQ via 37.5 ohms	
		2	PWR	DAC Head 0 analogue ground = $0v$	
DacAAG[0]	AH	3	PWR	(isolated from GND) DAC Head 0 Analogue Ground	
DacAAG[1]	AG	2	PWR		
DacAAG[2]	AD	2	PWR	DAC Head 0 Analogue Ground DAC Head 0 Analogue Ground	
DacAAG[3]	AD	4	AN	DAC Head 0 Blue Out	
DacABlue	AD	1	AN	DAC Head 0 Op-amp Compensation	
DacAComp	AE	1	AN	DAC Head 0 Op-amp Compensation	
DacAFSAdj	AD	3	AN	DAC Head 0 Full Scale Adjust	
DacAGreen	AF	1	AN	DAC Head 0 Green Out	
DacARed	AG	1	OUT	DAC Head 0 Red Out	
DacAVAA[0]	AF	2	PWR	DAC Head 0 Analogue Power	
DacAVAA[0]	AF	4	PWR	DAC Head 0 Analogue Power	
DacAVAA[1]	AE	2	PWR	DAC Head 0 Analogue Power	
Dachthh[2]		2	PWR	DAC Head 0 Voltage Reference signal	
DacAVref	AF	3			
DacBAG[0]	AC	3	PWR	DAC Head 1 Analogue Ground	
DacBAG[1]	AB	2	PWR	DAC Head 1 Analogue Ground	
DacBAG[2]	W	2	PWR	DAC Head 1 Analogue Ground	
DacBAG[3]	W	4	PWR	DAC Head 1 Analogue Ground	
DacBBlue	W	1	AN	DAC Head 1 Blue Out	
			AN	DAC Head 1 Op-amp Compensation	
DacBComp	Y	1			
DacBFSAdj	W	3	AN	DAC Head 1 Full Scale Adjust	
DacBGreen	AA	1	AN	DAC Head 1 Green Out	
DacBRed	AB	1	AN	DAC Head 1 Red Out	
DacBVAA[0]	AA	2	PWR	DAC Head 1 Analogue Power	
DacBVAA[1]	AA	4	PWR	DAC Head 1 Analogue Power	
DacBVAA[2]	Y	2	PWR	DAC Head 1 Analogue Power	
DacBVref	AA	3	PWR	DAC Head 1 Voltage Reference	
DfpABlank	к	1	OUT	DFP Blank signal Head 0	
DfpAStrobe	J	5	OUT	DFP Data Strobe signal Head 0	
DfpBBlank	N	2	OUT	DFP Blank signal Head 1	
DfpBStrobe	N	1	OUT	DFP Strobe signal Head 1	
			BIDIR	Flat Panel Data signal / Interleave Data In	
DfpData[0]	F	2		signal	

PIN NAME	LOCATIO	N TYPE	DESCRIPTION
	_	BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[1]	F 1		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[10]	J 3		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[11]	J 4		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[12]	K 2		signal
D(+ D + (-140)		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[13]	K 3	סוסוס	signal
DfpData[14]	К 4	BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[14]	<u> </u>	BIDIR	signal Flat Panel Data signal / Interleave Data In
DfpData[15]	L 1	DIDIK	signal
DipDala[15]		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[16]	L 2	DIDIK	signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[17]	L 3	DIDIIX	signal
Dipbata[11]		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[18]	L 4	DIDIN	signal
DipBala[10]		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[19]	L 5	2.2	signal
_ · [- • · • · [· •]		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[2]	G 2		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[20]	M 2		signal
- · ·		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[21]	М 3		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[22]	M 4		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[23]	M 5		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[3]	G 3		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[4]	G 4		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[5]	H 1		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[6]	H 2		signal
		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[7]	H 3		signal
Df= D =t=[0]		BIDIR	Flat Panel Data signal / Interleave Data In
DfpData[8]	H 4	BIDIR	signal Flat Panel Data signal / Interleave Data In
DfpData[9]	Н 5	JUIK	signal
DipData[9]		PWR	Supplied from SSTLDFP_Vref =
DFPVREF[0]	J 2		VCC_DFP/2
		PWR	Supplied from SSTLDFP_Vref =
DFPVREF[1]	N 3		VCC_DFP/2
		IN	Genlock Vertical Sync signal for
			ExtVSync, enabled by GenLockControl
GenVSync	AG 7		register

PIN NAME	LOC	LOCATION		DESCRIPTION	
Lock	AG	6	BIDIR	Same as P10 VidLock signals	
MAAddr[10]	А	18	OUT	Memory Controller A Address signal	
MAAddr[0]	В	13	OUT	Memory Controller A Address signal	
MAAddr[1]	А	15	OUT	Memory Controller A Address signal	
MAAddr[2]	В	17	OUT	Memory Controller A Address signal	
MAAddr[3]	В	18	OUT	Memory Controller A Address signal	
MAAddr[4]	А	19	OUT	Memory Controller A Address signal	
MAAddr[5]	В	19	OUT	Memory Controller A Address signal	
MAAddr[6]	В	20	OUT	Memory Controller A Address signal	
MAAddr[7]	A	17	OUT	Memory Controller A Address signal	
MAAddr[8]	А	14	OUT	Memory Controller A Address signal	
MAAddr[9]	В	15	OUT	Memory Controller A Address signal	
			OUT	Memory Controller A Address 'A' signal	
MAAddrA	В	14			
			BIDIR	Memory Controller A Address 'B' signal	
MAAddrB[0]	A	16			
			OUT	Memory Controller A Address 'B' signal	
MAAddrB[1]	В	16	OUT		
	в	12	OUT	Memory Controller A Bank Address signal	
MABa[0]	В	12	OUT	Memory Controller A Bank Address signal	
MABa[1]	A	13	001	Memory Controller A Darik Address signal	
			OUT	Memory Controller A Column Address	
MACasN	В	11		Strobe signal	
			OUT	Memory Controller A Clock Enable signal	
MACke	В	21			
			OUT	Memory Controller A Differential Clock	
MACIk	Α	20		signal	
MACHINI		04	OUT	Memory Controller A Differential Clock	
	A	21	BIDIR	signal	
MAData[0]	F	4	BIDIR	Memory Controller A Data signal	
MAData[1]	E	4		Memory Controller A Data signal Memory Controller A Data signal	
MAData[10]	B	4	BIDIR		
MAData[11]	D	5	BIDIR	Memory Controller A Data signal	
MAData[12]	C	5		Memory Controller A Data signal	
MAData[13]	B	5	BIDIR	Memory Controller A Data signal	
MAData[14]	A	5	BIDIR	Memory Controller A Data signal	
MAData[15]	E	6	BIDIR	Memory Controller A Data signal	
MAData[16]	D	6	BIDIR	Memory Controller A Data signal	
MAData[17]	С	6	BIDIR	Memory Controller A Data signal	
MAData[18]	D	7	BIDIR	Memory Controller A Data signal	
MAData[19]	C	7	BIDIR	Memory Controller A Data signal	
MAData[2]	E	3	BIDIR	Memory Controller A Data signal	
MAData[20]	A	7	BIDIR	Memory Controller A Data signal	
MAData[21]	D	8	BIDIR	Memory Controller A Data signal	
MAData[22]	С	8	BIDIR	Memory Controller A Data signal	
MAData[23]	E	9	BIDIR	Memory Controller A Data signal	
MAData[24]	D	9	BIDIR	Memory Controller A Data signal	
MAData[25]	С	9	BIDIR	Memory Controller A Data signal	
MAData[26]	В	9	BIDIR	Memory Controller A Data signal	

PIN NAME	LOCA	TION	TYPE	DESCRIPTION
MAData[27]	E	10	BIDIR	Memory Controller A Data signal
MAData[28]	D	10	BIDIR	Memory Controller A Data signal
MAData[29]	с	10	BIDIR	Memory Controller A Data signal
MAData[3]	E	2	BIDIR	Memory Controller A Data signal
MAData[30]	Е	11	BIDIR	Memory Controller A Data signal
MAData[31]	E	12	BIDIR	Memory Controller A Data signal
MAData[32]	D	12	BIDIR	Memory Controller A Data signal
MAData[33]	E	13	BIDIR	Memory Controller A Data signal
MAData[34]	_ D	13	BIDIR	Memory Controller A Data signal
MAData[35]	C	13	BIDIR	Memory Controller A Data signal
MAData[36]	E	14	BIDIR	Memory Controller A Data signal
MAData[37]	D	14	BIDIR	Memory Controller A Data signal
MAData[38]	D	15	BIDIR	Memory Controller A Data signal
MAData[39]	c	15	BIDIR	Memory Controller A Data signal
MAData[4]	E	1	BIDIR	Memory Controller A Data signal
MAData[40]	E	17	BIDIR	Memory Controller A Data signal
MAData[41]	D	17	BIDIR	Memory Controller A Data signal
MAData[42]	E	18	BIDIR	Memory Controller A Data signal
MAData[43]	D	18	BIDIR	Memory Controller A Data signal
MAData[44]	C	18	BIDIR	Memory Controller A Data signal
MAData[45]	E	19	BIDIR	Memory Controller A Data signal
	D	19	BIDIR	Memory Controller A Data signal
MAData[46]	E	20	BIDIR	Memory Controller A Data signal
MAData[47]	E	20	BIDIR	Memory Controller A Data signal
MAData[48]	⊑ D	21	BIDIR	Memory Controller A Data signal
MAData[49]	D	3	BIDIR	Memory Controller A Data signal
MAData[5]	С	21	BIDIR	Memory Controller A Data signal
MAData[50]	D	22	BIDIR	Memory Controller A Data signal
MAData[51]	C	22	BIDIR	Memory Controller A Data signal
MAData[52]			BIDIR	Memory Controller A Data signal
MAData[53]	D	23	BIDIR	Memory Controller A Data signal
MAData[54]	C	23	BIDIR	Memory Controller A Data signal
MAData[55]	E	24	BIDIR	Memory Controller A Data signal
MAData[56]	D	24	BIDIR	Memory Controller A Data signal
MAData[57]	C	24	BIDIR	Memory Controller A Data signal
MAData[58]	B	24		, ,
MAData[59]	E	25	BIDIR	Memory Controller A Data signal
MAData[6]	С	2	BIDIR	Memory Controller A Data signal
MAData[60]	D	25	BIDIR	Memory Controller A Data signal
MAData[61]	С	25	BIDIR	Memory Controller A Data signal
MAData[62]	D	26	BIDIR	Memory Controller A Data signal
MAData[63]	C	26	BIDIR	Memory Controller A Data signal
MAData[7]	С	1	BIDIR	Memory Controller A Data signal
MAData[8]	D	4	BIDIR	Memory Controller A Data signal
MAData[9]	С	4	BIDIR	Memory Controller A Data signal Memory controller A Data write
MADm[0]	D	2	OUT	mask signal
MADm[1]	в	6	OUT	Memory controller A Data write mask signal
MADm[2]	в	8	OUT	Memory controller A Data write

PIN NAME	LOCATIO	ON TYPE	DESCRIPTION	
			mask signal	
			Memory controller A Data write	
MADm[3]	D 11	OUT	mask signal	
	D 16	OUT	Memory controller A Data write mask signal	
MADm[4]		001	Memory controller A Data write	
MADm[5]	D 20	OUT	mask signal	
			Memory controller A Data write	
MADm[6]	B 23	OUT	mask signal Memory controller A Data write	
MADm[7]	B 25	OUT	mask signal	
		BIDIR	Memory Controller A Data Strobe signal	
MADqs[0]	D 1			
		BIDIR	Memory Controller A Data Strobe signal	
MADqs[1]	A 6			
MADqs[2]	A 8	BIDIR	Memory Controller A Data Strobe signal	
MADQS[2]	A 0	BIDIR	Memory Controller A Data Strobe signal	
MADqs[3]	C 11		Mornery Controller / Data Otrobe Signal	
1-1-1		BIDIR	Memory Controller A Data Strobe signal	
MADqs[4]	C 16			
		BIDIR	Memory Controller A Data Strobe signal	
MADqs[5]	C 20			
		BIDIR	Memory Controller A Data Strobe signal	
MADqs[6]	A 23	BIDIR	Memory Controller A Data Strobe signal	
MADqs[7]	A 25			
		OUT	Memory Controller A Row Address Strobe	
MARasN	A 12		signal	
		OUT	Memory Controller A Write Enable signal	
MAWeN	A 11			
MBAddr[10]	U 30		Memory Controller B Address signal	
MBAddr[0]	M 29		Memory Controller B Address signal	
MBAddr[1]	P 30	- · · · -	Memory Controller B Address signal	
MBAddr[2]	T 29		Memory Controller B Address signal	
MBAddr[3]	U 29	- · · ·	Memory Controller B Address signal	
MBAddr[4]	V 30	a	Memory Controller B Address signal	
MBAddr[5]	V 29	- · · · -	Memory Controller B Address signal	
MBAddr[6]	W 29	- · · · -	Memory Controller B Address signal	
MBAddr[7]	T 30	o	Memory Controller B Address signal	
MBAddr[8]	N 30		Memory Controller B Address signal	
MBAddr[9]	P 29		Memory Controller B Address signal	
MBAddrA	N 29	OUT	Memory Controller B Address 'A' signal	
	29	OUT	Memory Controller B Address 'B' signal	
MBAddrB[0]	R 30			
		OUT	Memory Controller B Address 'B' signal	
MBAddrB[1]	R 29	· · · · · · · · · · · · · · · · · · ·		
		OUT	Memory Controller B Bank Address signal	
MBBa[0]	L 29			
		OUT	Memory Controller B Bank Address signal	
MBBa[1]	M 30			

PIN NAME L		LOCATION		DESCRIPTION
			OUT	Memory Controller B Column Address
MBCasN	к	29		Strobe signal
			OUT	Memory Controller B Clock Enable signal
MBCke	Y	29	0.17	
MDOIL	10/	20	OUT	Memory Controller B Differential Clock
MBClk	W	30	OUT	signal Memory Controller B Differential Clock
MBCIkN	Y	30	001	signal
MBData[0]	A	26	BIDIR	Memory Controller B Data signal
MBData[1]	C	27	BIDIR	Memory Controller B Data signal
MBData[10]	F	27	BIDIR	Memory Controller B Data signal
MBData[11]	F	28	BIDIR	Memory Controller B Data signal
MBData[12]	F	29	BIDIR	Memory Controller B Data signal
MBData[13]	F	30	BIDIR	Memory Controller B Data signal
MBData[14]	G	26	BIDIR	Memory Controller B Data signal
MBData[15]	G	27	BIDIR	Memory Controller B Data signal
MBData[16]	G	28	BIDIR	Memory Controller B Data signal
MBData[17]	G	29	BIDIR	Memory Controller B Data signal
MBData[18]	G	30	BIDIR	Memory Controller B Data signal
MBData[19]	H	27	BIDIR	Memory Controller B Data signal
MBData[2]	В	28	BIDIR	Memory Controller B Data signal
MBData[20]	H	28	BIDIR	Memory Controller B Data signal
MBData[21]	Н	29	BIDIR	Memory Controller B Data signal
MBData[22]	J	26	BIDIR	Memory Controller B Data signal
MBData[23]	ĸ	26	BIDIR	Memory Controller B Data signal
MBData[24]	К	27	BIDIR	Memory Controller B Data signal
MBData[25]	K	28	BIDIR	Memory Controller B Data signal
MBData[26]	1	26	BIDIR	Memory Controller B Data signal
MBData[27]	M	26	BIDIR	Memory Controller B Data signal
MBData[28]	M	27	BIDIR	Memory Controller B Data signal
MBData[29]	N	26	BIDIR	Memory Controller B Data signal
MBData[3]	C	28	BIDIR	Memory Controller B Data signal
MBData[30]	N	27	BIDIR	Memory Controller B Data signal
MBData[31]	N	28	BIDIR	Memory Controller B Data signal
MBData[32]	P	26	BIDIR	Memory Controller B Data signal
MBData[33]	P	27	BIDIR	Memory Controller B Data signal
MBData[34]	T	27	BIDIR	Memory Controller B Data signal
MBData[35]	U	26	BIDIR	Memory Controller B Data signal
MBData[36]	U	27	BIDIR	Memory Controller B Data signal
MBData[37]	V	26	BIDIR	Memory Controller B Data signal
MBData[38]	V	27	BIDIR	Memory Controller B Data signal
MBData[39]	V	28	BIDIR	Memory Controller B Data signal
MBData[33]	C	29	BIDIR	Memory Controller B Data signal
MBData[4]	w	29	BIDIR	Memory Controller B Data signal
MBData[40]	W	20	BIDIR	Memory Controller B Data signal
MBData[41]	Y	26	BIDIR	Memory Controller B Data signal
	AA	26	BIDIR	Memory Controller B Data signal
MBData[43]			BIDIR	Memory Controller B Data signal
MBData[44]	AA	27	BIDIR	Memory Controller B Data signal
MBData[45]	AA	28	אוסוס	Merriory Controller & Data Signal

PIN NAME	LOCA	ATION	TYPE	DESCRIPTION		
MBData[46]	AB	26	BIDIR	Memory Controller B Data signal		
MBData[47]	AB	27	BIDIR	Memory Controller B Data signal		
MBData[48]	AB	28	BIDIR	Memory Controller B Data signal		
MBData[49]	AB	29	BIDIR	Memory Controller B Data signal		
MBData[5]	D	27	BIDIR	Memory Controller B Data signal		
MBData[50]	AC	27	BIDIR	Memory Controller B Data signal		
MBData[51]	AC	28	BIDIR	Memory Controller B Data signal		
MBData[52]	AD	26	BIDIR	Memory Controller B Data signal		
MBData[53]	AD	27	BIDIR	Memory Controller B Data signal		
MBData[54]	AD	28	BIDIR	Memory Controller B Data signal		
MBData[55]	AD	29	BIDIR	Memory Controller B Data signal		
MBData[56]	AD	30	BIDIR	Memory Controller B Data signal		
MBData[57]	AE	27	BIDIR	Memory Controller B Data signal		
MBData[58]	AE	29	BIDIR	Memory Controller B Data signal		
MBData[59]	AE	30	BIDIR	Memory Controller B Data signal		
MBData[6]	D	28	BIDIR	Memory Controller B Data signal		
	AF	27	BIDIR	Memory Controller B Data signal		
MBData[60]	AF	28	BIDIR	Memory Controller B Data signal		
MBData[61]			BIDIR	Memory Controller B Data signal		
MBData[62]	AG	28	BIDIR	Memory Controller B Data signal		
MBData[63]	AG	29	BIDIR			
MBData[7]	D	29		Memory Controller B Data signal		
MBData[8]	D	30	BIDIR	Memory Controller B Data signal		
MBData[9]	E	27		Memory Controller B Data signal Memory Controller B Data wirte		
MBDm[0]	в	27	001	mask signal		
			OUT	Memory Controller B Data wirte		
MBDm[1]	E	29		mask signal		
MBDm[2]		27	OUT	Memory Controller B Data wirte mask signal		
	J	21	OUT	Memory Controller B Data wirte		
MBDm[3]	L	27		mask signal		
			OUT	Memory Controller B Data wirte		
MBDm[4]	R	27	OUT	mask signal Memory Controller B Data wirte		
MBDm[5]	Y	27	001	mask signal		
			OUT	Memory Controller B Data wirte		
MBDm[6]	AC	29	<u> </u>	mask signal		
			OUT	Memory Controller B Data wirte mask signal		
MBDm[7]	AF	29	BIDIR	Memory Controller B Data Strobe signal		
MBDqs[0]	А	27	DIDIK	Meriory Controller & Data Strobe Signal		
	~~~~~	21	BIDIR	Memory Controller B Data Strobe signal		
MBDqs[1]	E	30	2.2			
			BIDIR	Memory Controller B Data Strobe signal		
MBDqs[2]	J	28				
			BIDIR	Memory Controller B Data Strobe signal		
MBDqs[3]	L	28				
			BIDIR	Memory Controller B Data Strobe signal		
MBDqs[4]	R	28	B.F. :-			
MDDariel		00	BIDIR	Memory Controller A Data Strobe signal		
MBDqs[5]	Y	28				

PIN NAME	LOC	LOCATION		DESCRIPTION		
	AC	AC 30		Memory Controller B Data Strobe signal		
MBDqs[7]	AF	30	BIDIR	Memory Controller B Data Strobe signal		
MBRasN	L	30	OUT	Memory Controller B Row Address Strobe signal		
			OUT	Memory Controller B Write Enable signal		
MBWeN	К	30	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[0]	AH	27	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[1]	AJ	27	סוסוס	$\Delta D(24,0)$ address and data hus $(4.5,2,2)(1)$		
PCIAD[10]	AJ	24	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[11]	AG	23	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[12]	AK	23	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
		23	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[13]	AH		BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[14]	AJ	23	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[15]	AG	22	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[16]	AG	19	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[17]	AJ	19				
PCIAD[18]	AH	19	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[19]	AK	18	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[2]	AG	26	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
			BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[20]	AG	18	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[21]	AJ	18	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[22]	AH	18	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[23]	AK	17				
PCIAD[24]	AG	16	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[25]	AK	16	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[26]	AH	16	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
<b>`</b>			BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[27]	AJ	16	BIDIR	AD(31-0) address and data bus (1.5-3.3V)		
PCIAD[28]	AG	15				

#### Pin Assignment

PIN NAME	LOCATION TYP		TYPE	DESCRIPTION
			BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[29]	AK	15		(,
			BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[3]	AK	26		
			BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[30]	AH	15		
	A 1	15	BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[31]	AJ	15	BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[4]	AH	26	DIDIK	
[ . ]			BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[5]	AJ	26		
			BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[6]	AG	25		
			BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[7]	AK	25		
		24	BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[8]	AK	24	BIDIR	AD(31-0) address and data bus (1.5-3.3V)
PCIAD[9]	AH	24	DIDIK	
			BIDIR	C/BE Command Bus Byte Enables{1.5V-
PCICBEN[0]	AG	24		3.3v]
			BIDIR	C/BE Command Bus Byte Enables{1.5V-
PCICBEN[1]	AK	22		3.3v]
			BIDIR	C/BE Command Bus Byte Enables{1.5V-
PCICBEN[2]	AK	19		3.3v]
	AG	17	BIDIR	C/BE Command Bus Byte Enables{1.5V-
PCICBEN[3]	AG	17 8	IN	3.3v] Clk PciClk (3.3v)
PCIClk PCIDevSelN	AJ	° 22	BIDIR	DEVSEL# Device select[1.5V-3.3V]
PCIFrameN	AH	20	BIDIR	Frame# Cycle Frame(3.3v)
PCIGntN	AH	9	IN	Gnt# Grant (3.3v)
PCIIdSel	AF	23	IN	Initialisation Device Select
PCIIntAN	AH	8	OUT	INTA# Interrupt A open drain
PCIIRdyN	AJ	20	BIDIR	IRDY# Initiator ready (3.3v)
PCIPar	AH	22	BIDIR	PAR Parity (3.3v)
PCIReqN	AK	9	OUT	REQ# Request[3.3v]
PCIRstN	AG	8	IN	RST# Reset (3.3v)
PCIStopN	AG	21	BIDIR	STOP# [3.3v]
PCITRdyN	AH	21	BIDIR	TRDY# Target Ready[3.3v]
	7.41		PWR	PLL analogue ground = 0v (islolated from
PLLAG[0]	AJ	7		GND)
			PWR	PLL analogue ground = 0v (isolated from
PLLAG[1]	AJ	6		GND)
			PWR	PLL analogue ground = 0v (isolated from
PLLAG[2]	AJ	5		GND)
PLLVAA[0]	AH	7	PWR	PLL analogue power = 3.3v
PLLVAA[1]	AH	6	PWR	PLL analogue power 3.3v
PLLVAA[2]	AH	5	PWR	PLL analogue power 3.3v
DefClir	A 17	c	IN	Alternative External Reference Clock
RefClk	AK	6		signal

PIN NAME	LOC	LOCATION		DESCRIPTION		
00.01		BIDIR		Serial Bus Clk signal (Open Collector) Controled from <u>ROMControl</u>		
SBClk	AH	2	BIDIR	register. Serial Bus Data signal (Open Collector) Controled from ROMControl		
SBData	AH	1	IN	register. Production Test Mode Scan Enable signal		
ScanEnable	AF	7				
SSTLVREF[0]	В	10	IN	Memory controller reference voltage signal		
			IN	Memory controller reference voltage		
SSTLVREF[1]	B	22	IN	signal Memory controller reference voltage		
SSTLVREF[2]	J	29	IN	signal Memory controller reference voltage		
SSTLVREF[3]	AA	29		signal		
Stereo	AJ	4	OUT	Video Stereo signal		
TestMode	AF	6	IN	Production test global enable (Active high)		
VCC_DFP	Р	1	PWR	2.50vdc nominal		
VCC_DFP	Р	4	PWR	2.50vdc nominal		
VCC_DFP	к	5	PWR	2.50vdc nominal		
VCC_DFP	G	1	PWR	2.50vdc nominal		
VCC_DFP	G	5	PWR	2.50vdc nominal		
VDD_TTL	AJ	1	PWR	3.30vdc nominal		
VDD_TTL	AJ	2	PWR	3.30vdc nominal		
VDD_TTL	AF	5	PWR	3.30vdc nominal		
VDD_TTL	AC	2	PWR	3.30vdc nominal		
VDD_TTL	AC	5	PWR	3.30vdc nominal		
VDD_TTL	W	5	PWR	3.30 vdc nominal		
VDD_TTL	U	1	PWR	3.30vdc nominal		
VDD_TTL	Р	5	PWR	3.30vdc nominal		
VDD_TTL	AF	8	PWR	3.30vdc nominal		
VDD_TTL	AK	7	PWR	3.30vdc nominal		
VDD_TTL	AK	2	PWR	3.30vdc nominal		
			PWR	3.30vdc nominal (1.50vdc nominal		
VDDQ	AH	28		AGP4X)		
			PWR	3.30vdc nominal (1.50vdc nominal		
VDDQ	AG	20		AGP4X)		
			PWR	3.30vdc nominal (1.50vdc nominal		
VDDQ	AF	16	DWD	AGP4X)		
		1.4	PWR	3.30vdc nominal (1.50vdc nominal		
VDDQ	AH	14	PWR	AGP4X) 3.30vdc nominal (1.50vdc nominal		
VDDQ	AF	9	I WIX	AGP4X)		
		5	BIDIR	DAC DDC Clk signal Head 0 (Open		
VidADDCClk	U	2		collector)		
			BIDIR	DAC DDC Data signal Head 0 (Open		
VidADDCData	U	3		collector)		
VidAHSync	Р	2	OUT	DAC Horizontal Sync signal Head 0		

VidAVSync	Р	3	OUT	DAC Vertical Sync signal Head 0
			BIDIR	Head 1 DDC Clk signal (Open Collector)
VidBDDCClk	V	2		
			BIDIR	Head 1 DDC Data signal (Open Collector)
VidBDDCData	V	3		
VidBHSync	N	4	OUT	DAC Horizontal Sync signal Head 1
VidBVSync	N	5	OUT	DAC Vertical Sync signal Head 1
			IN	Dual Function:
				DAC Horizontal Sync signal Head 1, and
				PCIClk 66MHz capable (Active High) -
VidInData[0]	R	3		see <u>Reset</u>
			IN	Dual Function:
				Video Input Data signal, and
				Active High Boot from ROM
VidInData[1]	R	4		(UseROMConfig) – see Reset
			IN	Dual Function:
				Video Input Data signal, and
				Active High Board is AGP Type - see
VidInData[2]	R	5		Reset
VidInData[3]	Т	1	IN	Video Input signal
VidInData[4]	т	2	IN	Video Input Data signal
VidInData[5]	т	3	IN	Video Input Data signal
VidInData[6]	Т	4	IN	Video Input Data signal
VidInData[7]	т	5	IN	Video Input signal
			IN	Video Input Data Strobe and Clock Source
VidInStrobe	R	2		signal
			BIDIR	External Reference Clock Source signal
Xtal	AK	5		

#### 8.5 Pinlist by Number

#### 8.6 Schematics

Please refer to the supplied PDF or ZIP file for P9 Typical Board Layouts and Data.

## **9** Memory

The P9 memory system is intended for use with Double Data Rate (DDR) Synchronous Dynamic Memories. The memories can be SGRAM or SDRAM devices. Configuration is via <u>memory control</u> registers in region 0.:

The system supports a 256 bit interface split into two 128 bit buses with replicated address and control lines. It can operate as a single 128 bit TQFP or CSP interface. Each interface has its own Address Bus, Control Signals and full register set.

#### 9.1 Strobe Setup

Strobes are supplied from memory on data transitions and repositioned to give sufficient data setup time using delay chains. There is a register bitfield which selectively delays each of the Incoming and Outgoing strobes and the Clock Out. For a typical clock delay chain register set see *P9 Reference Guide* volume II:

- MV0Clock
- MV0StrobeInvert
- <u>MV0StrobeOutDelay0</u>
- MV0StrobeOutDelay1
- <u>MV0StrobeInDelay0</u>, and
- <u>MV0StrobeInDelay1</u>

The system can be configured to use Strobe per Byte or Strobe per Device.

Note: There is no clock In delay

#### 9.1.1 DDR SDRAM

This configuration uses a full set of 4 individual strobes plus clock out. There is one delay register for each byte lane and controller. The memory device is a 32 bit CSP.

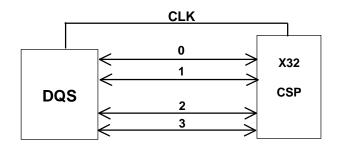



Figure 9.1 Non-common Strobes (DDR SDRAM)

#### 9.1.2 DDR SGRAM

For sigle-strobe devices the strobe is replicated internally on input to supply the 4 strobe lines. DDR SGRAMs are not frequently encountered because they tend to use arbitrary blockfill without support for byte masking.

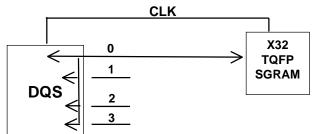



Figure 9.2 Common Strobes (DDR SGRAM)

#### 9.1 System Parameters

The Memory System employs a comprehensive set of registers which allow for a wide range of memory configurations. The timing parameters used to control synchronous memories can be adjusted to allow for optimum performance depending on memory type, speed grade, data rate and the system clock frequency (MClk). Memory functionally can be enabled depending on the type fitted. Full addressing control is available so that virtually any memory configuration can be fitted.

The following parameters are used to control accesses to the memory. These values fall into three categories

- Addressing
- Functionality and Optimizations
- Timing and Mode

#### 9.1.1 Addressing

These parameters are specified in the **MemoryControl** and **MVCaps** registers.

Note: On P9 the Column Address is always 0

#### 9.1.2 Mode and Timing

These parameters are specified in the MVMode, MVCaps and delay chain registers registers.

#### 9.1.3 Mode

The mode register stores the data for controlling the various operating modes of the DDR SGRAM. It programs CAS latency, addressing mode, burst length, test mode, DLL Reset and various vendor specific options.

Bits	Name	Read	Write	Rese	Description
02	BL	1	1	t Ox	Burst Length always = 4 (must be 4 dwords)
02	52	•	•	XXXX	
				XXX	
				X	
3	BT	1	1		Burst Type always = 0 (Sequential)
46	CAS	1	1		CAS Latency
7	ТМ	1	1		Test Mode
8	DLL	1	1		DLL Reset: 0= No, 1 = Yes
911	Reserved	1	×		Reserved for future use
12	Mode	1	1		Mode/Extended Mode: 0 = Mode, 1 =
					Extended Mode.
1315	Reserved	1	×		
	Extended	1	1		Bit pattern to load into extended mode register
	Mode				during initialization
16	DLL	1	1		DLL Enable (should be set = 1)
17	DS0	1	1		DriveStrength0: With DS1, sets drive
					strength and matched impedance mode.
1821	Reserved	1	×		
22	DS1	1	1		See DS0
2327	Reserved	1	×		
28	Extended	1	1		0 = Mode
	Mode Access				1 = Extended Mode

#### 9.1.3.1 Burst Length

BL is always 4 dwords on P9

#### 9.1.3.2 Burst Type

Burst Type is Sequential (=0)

#### 9.1.3.3 CAS Latency (CL)

This parameter determines the CAS latency expected by the memory controller. The *CasLatency* parameter can be loaded directly with the appropriate value from the memory device data sheet plus 1. For example, if a CAS latency of 2 is required then the CasLatency parameter should be set to 3.

#### 9.1.4 Extended Mode Parameters

These fields control the DLL enables, Driver Impedance control (DIC) and QFC. DLL and DIC are enabled, QFC is disabled. See the <u>MVMode</u> register mask details.

#### 9.1.5 Memory Control

Refer to the MemoryControl register in Reference Guide Volume II for parameter information.

#### 9.1.6 MVTimingA

#### 9.1.6.1 Row Cycle (tRC)

The minimum time between Activate Commands to the same bank, calculated as tRC (in MClks) -1.

#### 9.1.6.2 RAS to CAS Write (tRCDWR)

The delay from an Activate Command to a Write Command, calculated as: tRCDWR (in MClks) -1.

#### 9.1.6.3 RAS to CAS Read (tRCDRD)

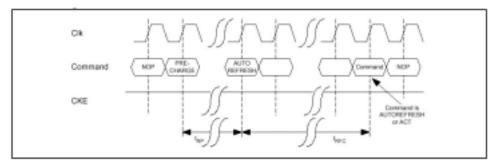
The delay from an Activate Command to a Read Command, calculated as: tRCDRD (in MClks) -1.

**3D***labs* 

#### 9.1.6.4 CAS to RAS Write (Write to Activate)

Delay from a Write Command to an Activate, defined as:

BL/2 (in Clocks) + 1 + tWR +tRD


Where +1 clock is to clear last data in.

#### 9.1.6.5 CAS to RAS Read (Read to Activate)

Delay from Read Command to Activate, calculated as tRP + (BL/2)

#### 9.1.6.6 Refresh Cycle (tRFC)

This parameter defines the minimum number of MClk cycles that need to be inserted between issuing a REFRESH and an ACTIVATE command, caculated as tRC (in MClk cycles) -1. It must be enabled by setting the *RefreshEnable* bit in **MVTimingB**.*RefreshEnable*.



#### Figure 9.3 Refresh Cycle timing for Infineon HYB25D128323C 128Mbit DDR

#### 9.1.7 MVTimingB

#### 9.1.7.1 RefreshEnable

This flag should be set for Refresh commands to be issued by the memory controller (see MVTimingB).

#### 9.1.7.2 RefreshCount (tRC)

This parameter defines the period between AUTO-REFRESH commands being issued to the memories. The count is in MClks. A delay between the Auto Refresh command and the next Activate Command or subsequent Auto Refresh Command must be greater than or equal to the tRC(min).

#### 9.1.7.3 ActivateToActivate (tRRD)

This parameter defines the number of MClk cycles that need to be inserted between issuing an ACTIVATE and a subsequent ACTIVATE command to another bank. This parameter is usually detailed in the memory device data sheet as tRRD. If tRRD is quoted including the ACTIVATE cycle, then ActivateToActivate should be calculated as tRRd (in MClk cycles) – 1.

#### 9.1.7.4 Write to Read ()

A Burst Write can be interrupted by a Read command sent to any bank. Delay between a write and a read cycle, calculated as:

BL/2 + 1 + tWR

...where +1 is a clock to clear data from the last input operation.

#### 9.1.7.5 Read to Write

Delay between a read and a write cycle, calculated as: CAS Latency + BL/2

#### 9.1.8 MVCaps

Refer to the <u>MVCaps</u> register in *Reference Guide* Volume II for parameter information.

#### 9.1.9 MV0Clock

The MV0 Clock registers refer to Memory Bus A. The MV1Clock registers are identical but refer to bus B. The 4-bit field defines up to 16 taps at 220 picoseconds.

Refer to the <u>MV0Clock</u> or **MV1Clock** registers in the *P9 Reference Guide* Volume II for additional information.

#### 9.1.10 MV0StrobeInvert

#### 9.1.11 MV0StrobeOutDelay[0-1] and MV0StrobeInDelay[0-1] (tQDQSS / tDS)

Delay chain per strobe out or strobe in to configure for varying PCB layouts. The MV1 strobe delay chain registers are identical but apply to the second 128bit memory bus.

Figure 9.1 Typical Configuration for 128bit DD SDRAM

# 10 Reset

The P9 architecture loads all but the most critical initialisation information from the external Expansion ROM. Hard resets use three dual-function pins: VidInData(0), VidInData(1) and VidInData(2).

Note: These functionas are on different pins in P9 and P10.

VidInData(0) controls the PCI Clock speed (33MHz=1, 66MHz=0). VidInData(2) specifies whether the board is PCI or AGP (AGP=1, PCI=0).

Loading from the ROM is enabled using the single *UseROMConfig* configuration pin . This is a dualfunction pin described as <u>VidInData(1)</u> on the pinlist and schematics. Default initialisation values are used for registers when ROM loading is disabled. For more information on the ROMController see the <u>ROMControl</u> section of the *Reference Guide*, volume II.

Following a hardware reset from the PCI Bus, the internal configuration state machine reads the 32-bit word at what would be the highest location in a 64KByte ROM, and interprets this as a pointer to a Configuration Table, as shown in the ROM Layout diagram below.

Note: The vector address is 0xFFFC but the offsets are in dwords.

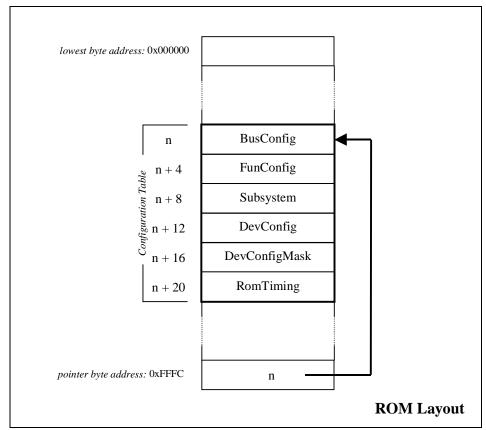



Figure 10.1 ROM Layout

Once the Configuration Table pointer has been read, a sequence of 32-bit words are loaded from it into configuration space registers in the PCI Config unit and control registers in the ROM Controller unit:

Table Offset	Table Field	Destination Unit	Destination Register	
00h	BusConfig	PCI Config	CFGBusConfig	
04h	FunConfig	PCI Config	CFGFunConfig	
08h	Subsystem	PCI Config	CFGSubsystemID and CFGSubsystemVendorID	
0Ch	DevConfig	PCI Config	CFGDevConfig	
10h	DevConfigMask	PCI Config	CFGDevConfigMask	
14h	RomTiming	ROM Controller	ROMTiming	

The <u>CFGBusConfig</u>, <u>CFGFunConfig</u>, <u>CFGDevConfig</u>, and <u>CFGDevConfigMask</u> registers are described in volume II. Each of these four user-defined registers is shared between all functions in a multi-function device, and accesses through any function are mapped to the same underlying register hardware by the bus interface.

# **11** Thermal

During operation the P9 chip generates heat as a function of the power consumed, which in turn depends on frequency, the number of Texture pipes and other factors. This heat must be dissipated through the package to avoid exceeding the chip's design heat limit ( $T_{j(max)}$ , typically 125°C) and damaging the chip. In addition to dissipation through the pins and thermal balls to the PCB this can be accomplished by improving thermal flow:

- through the chip (junction to ambient air, or  $\theta j_a$ )
- from junction to top-of-case  $(\theta j_c)$ .

These figures describe thermal resistance – lower is better. The top-of-case figure is significant where heatsinks and fans are considered.

#### 11.1 Thermal Performance

The thermal performance of the chip is described in JEDEC standard JESD 51-2, 51-6:

$$\theta_{ja} = (T_j - T_a) / P_h$$

 $\theta_{jc} = (T_j - T_c) / P_h$ 

where:

- Junction Temperature = Tj
- Ambient Temperature = Ta
- Top-of-case Temperature = Tc
- Power Dissipation = Ph

Working assumptions are:

#### 11.2 Thermal Resistivity Equations

These are taken from Ellison's Thermal Computations for Electronic Equipment.¹

#### **11.2.1 Natural Convection**

$$h_c = 0.83 \int \left(\frac{\Delta T}{L_{ch}}\right)^n (W/m^2 - {}^0C)$$

where  $\Delta T$  is the temperature difference in  $C^{\circ}$ , and the constants *f* and *n* are given as

f = 1.22 and n = 0.35 for a vertical plate;

f=1.00 and n = 0.33 for a horizontal plate facing upward; and

f = 0.50 and n = 0.33 for a horizontal plate facing downward

 $L_{ch}$  is the characteristic length in meters.

For a horizontal plate, 
$$L_{ch} = \frac{WL}{2(W+L)}$$

1 G. N. Ellison, Thermal Computations for Electronic Equipment, R. E. Krieger Publishing Company, Malabar, FL, 1989.

For a vertical plate,  $L_{ch} = H$ 

where W, H and L are the width, height and length of the plate, respectively

#### 11.2.2 Forced convection

 $h_c = 3.786(V/L)^{1/2}$  (W/m² - ⁰C)

where V is the air speed in m/s, and L is the total length in meters in the flow direction.

Data shown below are hypothetical based on typical package characteristics. Actual figures will be released when available.

		Thermal Resistance				
608L HSBGA	$(deg.C/Watt) = \theta_{ja}$			Ψjt	θ _{jc}	
	0 m/s	1 m/s	2 <i>m</i> /s	(C/W)	C/W	
No heatsink, 4L PCB	12.9	11.2	9.7	1.9	3.1	

#### Table 10-1 P9 Package (820L HSBGA) Thermal Performance

#### 11.3 Cooling

From this analysis, relying on natural convection alone the junction temperature increases 14.8°C/W under normal operating conditions (12.9+1.9 = 14.8). In order not to exceed  $\theta_{jt}$  the maximum ambient temperature would be 6.6°C at 8W. This would be inadequate and a heatsink would be recommended.

#### 11.4 Operation with Heatsink

#### **11.4.1 Heatsink Attachment**

The following method has been approved for the purpose of attaching a heatsink directly onto the HSBGA package:

Thermally conductive epoxy using either Loctite Output 315 with Loctite 7386 or type EG 7655 from A.I. Technology Inc. The thickness of the epoxy layer should be between 0.05mm and 0.15mm with 95% coverage of the contact area.

Typical achievable  $\theta_{cs}$  using this method is 1.0 °C/Watt

#### 11.4.2 Calculating cooling requirements

With a heatsink attached to the device the junction temperature will depend on  $\theta jt$ ,  $\theta cs$  and  $\theta sa$ , where  $\theta cs$  is the thermal resistance of the join between the heatsink and the case and  $\theta sa$  is the thermal resistance of the heatsink, which will be a function of heatsink and system airflow. These are shown as a combined package and heatsink  $\theta_{ia}$  a correction for junction to top of case ( $\psi_{it}$ ) and the bond resistance ( $\theta_{ca}$ ).

For a hypothetical 8 watts  $P_h$  in adiabatic conditions, junction temperature would be ambient plus 8(7.3 + 1.0 + 1.9) = ambient + 81.6 °C. The maximum ambient possible under this scenario would be 125-81.6=43.4 °C. This method allows easy calculation of cooling requirements under various operating conditions.

#### 11.4.3 Temperature Range (Commercial/Embedded Applications)

P9 is operational in embedded use under a wide range of ambient air temperatures:

- Storage Range: -65°C to 150°C (suitably packed)
- Operating Range: 0°C to T_{i(max)}²

 $^{^2}$  The operating range minima and maxima depend on the cooling configuration and whether any warm-up period is allowed. However with sufficient warmup or during continuous operation the thermal resistance would allow reliable operaton under much colder ambient toraditions. Similarly with a suitable fan the ambient temper **Anometeranization Consideration** yincreased without exceeding T_{j(max)}. **3D** *labs* 

# **12** Electrical

Provisional values may be subject to change and should be checked against current values on the 3Dlabs website³.

#### 12.1 Absolute Maximum Ratings

Junction Temperature	125°C
Storage Temperature	-65°C to 150°C
Operating Temperature	0°C to $T_{j(max)}$ (=125°C) ⁴
VDD_TTL, VCC_DFP, VCC2.5 DC	3.6vdc ⁵
Supply Voltages	
VCC1.2 DC Supply Voltage	1.32vdc
VDDQ, PLLVAA, DacVAA, AGP3V3	3.6vdc ⁶
DC Supply Voltages	
SSTL_Vref	VCC2V5/2
DFP_Vref	VCC_DFP/2
DacVREF, DacComp, DacFSAdj	Open
AGPVREF	VDDQ/2
I/O Pin Voltage with respect to GND	-0.5V to VDDQ + 0.3V

#### **12.2 DC Specifications**

Symbol/ PAD	Parameter	Min	Nominal	Unit
GND	Ground	0.00	0.00	Vdc
VCC1V2	Power at 1.20 vdc	1.08	1.20	Vdc
VDD_TTL	TTL Logic feed at 3.30 vdc	3.00	3.30	Vdc
VCC_DFP	DFP power at 2.5 vdc		2.50	Vdc
VCC2V5	Power at 2.5 vdc		2.50	Vdc
PLLVAA DacVAA AGP3V3	Power at 3.3 vdc		3.30	Vdc
SSTL_VRef	VCC2V5/2		1.25	Vdc
DFP_Vref	VCC_DFP/2		1.25	Vdc

³At: http://www.3dlabs.com

*Note:* SSTL VCC2V5, P VDDQ and others are capable of dual voltage operation. This shows standard TTL levels for simplicity.

⁴This is the maximum junction temperature – normally maximum ambient temperature will be much lower. Maximum ambient temperature depends on thermal path characteristics such as heatsink and air flow.

 $^{^5}$  SSTL VCC2V5 is capable of dual voltage operation. This shows standard TTL level for simplicity.

⁶ AGP VDDQ is capable of dual voltage operation. This shows standard TTL level for simplicity.

Symbol/ PAD	Parameter	Min	Nominal	Unit
DacVRef		Open	Open	Vdc
DacCOMP			0.1	μF to DACVAA
DacFSAdj			226	Ω to GND
AGPVRef	VDDQ / 2		VDDQ / 2	1
LPIN	Pin Inductance		2.807	nH
	Pin Capacitance		0.6023	pF
	Pin Resistance		107	mOhm
ICC (3V)	Power Supply Current		ТВА	A
ICC (2.5V)	Power Supply Current		ТВА	A

#### 12.2.1 PCI Signal DC Specifications

Symbol	Parameter	Min	Мах	Unit
V _{PIL}	Input Low Voltage	-0.5	0.3Vcc	V
V ^{PIH}	Input High Voltage	0.5Vcc	Vcc + 0.5	V
V _{POL}	Output Low Voltage		0.1Vcc	V
V _{POH}	Output High Voltage	0.9Vcc		V
I _{PIL}	Input Low Current	1500		UA
I _{PIH}	Input High Current	-500		UA
C _{PIN}	Input Capacitance		10	PF
C _{CLK}	PCI Clock Input	5	12	PF
	Capacitance			
CIDSEL	PCI Idsel Input Capacitance		8	PF

#### 12.2.2 PCI Signal DC Specifications

Symbol	Parameter	Min	Max	Unit
V _{PIL}	Input Low Voltage	-0.5	0.3Vcc	V
V ^{PIH}	Input High Voltage	0.5Vcc	Vcc + 0.5	V
V _{POL}	Output Low Voltage		0.1Vcc	V
V _{POH}	Output High Voltage	0.9Vcc		V
I _{PIL}	Input Low Current	1500		UA
I _{PIH}	Input High Current	-500		UA
C _{PIN}	Input Capacitance		10	PF
C _{CLK}	PCI Clock Input	5	12	PF
	Capacitance			
CIDSEL	PCI Idsel Input Capacitance		8	PF

#### 12.2.3 Non-PCI Signal DC Specifications

Symbol	Parameter	Min	Max	Unit
VIL	Input Low Voltage			V
VIH	Input High Voltage	-		V
Vol	Output Low Voltage	0.4	0.4	V
Vон	Output High Voltage	2.5	3.1	V
ЮН	Input Low Current	-4 [-8]	-4 [-8]	uA

#### 12.3 SSTL_2 Class I Signals (DDR Memory Interface Only)

Symbol	Parameter	Min	Мах	Units
IOL	Low Level Output Current	4 [8]	4 [8]	mA
IOH	High Level Output Current		16	mA
IIL	Low Level Input Current		2	uA
IIH	High Level Input Current		2	uA
		Dura minta ta mula da d	- fiele - tiel	

12-2

### 12.4 AC Specifications

Pin Name	Capacitive Load
PCIAD[31:0], PCICBEN[3:0], PCIPar, PCIFrameN, PCIIRdyN,	
PCITRdyN,	
PCIStopN, PCIIdsel, PCIDevselN, PCIReqN, PCIGntN,	
PCIIntAN ,AGPPipeN, AGPRbfN, AGPSBA[7:0],	
All other outputs	

#### 12.4.1 Clock Timing

Symbol	Parameter	Min	Max	Units	Notes
TPCyc	PCIClk Cycle Time	30	-	ns	
TPHigh	PCICIk High Time	-11	-	ns	
TSLow	PCICIk Low Time	-11	-	ns	
T _{MCyc}	MClkin Cycle Time		-	ns	
TMHigh	MClkin High Time	-	-	ns	
T _{MLow}	MClkin Low Time	-	-	ns	
TSCyc	SClkin Cycle Time		-	ns	
TSHigh	SClkin High Time		-	ns	
TSLow	SClkin Low Time		-	ns	
TDCyc	DClk Cycle Time		3.3-	ns	
TDHigh	DClk High Time	1.4	-	ns	
TDLow	DClk Low Time	1.4	-	ns	

#### 12.4.2 PCI Clock Referenced Input Timing

Parameter	T _{Su} Min	T _H Min	Units
PCIAD, PCICBEN	5.5	0	ns
PCIPar,	6.0	0	
PCIFrameN, PCIIRdyN, PCITRdyN,			
PCIStopN, PCIIdsel, PCIDevselN,			
AGPSt0-2			
PCIGntN	6	0	ns
PCIRstN	5	0	ns

*Note: PCIRstN is resynchronised internally. The timings given, when met, ensure that the reset is detected in the current cycle.* 

#### 12.4.3 PCI-Referenced Output Timing

	T _{Val}		TOn		TOff		
Parameter	Min	Max	Min	Max	Min	Max	Units
PCIAD[31::0],		6					ns
PCICBEN[3::0],		6					

PCIPar,	5.5			ns
PCIFrameN,	5.5			
PCIIRdyN,	5.5			
PCITRdyN,	5.5			
PCIStopN,	5.5			
PCIIdsel,	5.5			
PCIDevselN				
PCIReqN	5.5			ns
PCIIntAN	5.5			ns

Note: All signals are sampled on the rising edge of the clock. Each signal has a setup and hold aperture with respect to the rising clock edge, in which transitions are not allowed. Outside this aperture, signal values or transitions have no significance. Timings given are for falling edges of the open drain signal. Rise times are dependent on the external pull-up resistor.

#### 12.4.4 AGP Referenced Output Timing

As for PCI-Referenced Output Timing

#### 12.4.5 MEMCKOUT Referenced Input and Output Timing

The <u>MV0Strobe</u> registers control the delay chain per strobe out or strobe in to configure for varying PCB layouts determines the Hold and Setup times. The MV1 strobe delay chain registers are identical to MV0 but apply to the second 128bit memory bus.

# **13** Alerts and Errata

Alerts are part of 3Dlabs' commitment to providing comprehensive and useful information about chipset products. Alerts describe issues arising when the chip is used outside normal operating parameters and may be of interest to driver programmers.

#### 13.1 ALERT001

#### 13.1.1 Problem

When handling a page fault, the fault data is recovered from the MemoryPageControlFIFO with the **FaultID** in word 0, bit positions as follows:

- 0 graphics process
- 1 VGA
- 2 Command
- 3 Bypass
- 4 Page handler5 Translation lookaside buffer
- 6 Video 0
- 7 Video 0

However the bitmask used to Suspend or Restart an addressing source has VGA as bit 2 and Command as bit 1.

#### 13.1.2 Software Workaround

There are no functional implications if the programmer remembers to swap the Suspend mask VGA and *Command* bit positions.

#### 13.2 P9ERN001

#### 13.2.1 Problem

When using the **Restart** mask in operations such as Table Update Page DMA etc. where commands are sent to the memory controller's MemoryPageControlFifo, a **Suspend** mask must also be used. The **Suspend** mask must include reference to every currently suspended source.

#### 13.2.2 Software Workaround

Use a Suspend mask as appropriate.

#### 13.3 P9ERN002

#### 13.3.1 Problem

If the circular buffer is filled (i.e. *WritePointer* is set equal to *ReadPointer*), then the *ReadPointer* and *Busy* flags do not get updated correctly.

#### 13.3.2 Software Workaround

Do not completely fill the circular buffer - always leave at least 1 DWORD free. This also makes the software code easier as it doesn't have to worry about the buffer being full.

#### 13.4 P9ERN003

#### 13.4.1 Problem

If zero is written to the circular buffer the Busy flag is not updated correctly.

#### 13.4.2 Software Workaround

Put a CommandID tag at the start of the circular buffer. i.e.

DWORD 0	CommandID_Tag
DWORD 1	ID
DWORD 2	First word of data.

This gives the host a way of tracking that the chip has started using the circular buffer and writes a 2 to the buffer *WritePointer* instead of 0, avoiding the problem entirely.

#### INDEX 7-1 Cooling 11-2 Package Diagram Top View Package Diagrams Electrical Data 7-1 Package Profile Views 12-3 AC Specifications 7-3 12-1, 12-2 PCIClk DC Specifications 12-3 PCI Signal DC Specifications 12-2 PCIFrameN 12-3, 12-4 13-2 Errata and Alerts Pinlist by Name 8-2 Heatsink Pinlists 8-2 PrechargeToActivate (PTA) Attachment 11-2 9-4 Preferred Attachment Method 11-2 RefreshCount 9-4, 9-6 System Parameters 9-2 KClk 11-1 MClk 9-2, 11-1, 12-3 VClk 12-3