GLINT R4

Programmer's Guide - Volume 111

DRAFT ONLY

PROPRIETARY AND CONFIDENTIAL
INFORMATION

3D/

SD/:)s

GLINT R4

Programmer's Guide - Volume 111

PROPRIETARY AND CONFIDENTIAL
INFORMATION

Issue 3

GLINT R4 Programmer’s Guide Volume ll| Contents

Proprietary Notice

The material in this document is the intellectual property of 3D/4s. It is provided solely for
information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3D/z4s accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice. 3D/z4s may not
produce printed versions of each issue of this document. The latest version will be
available from the 3D/zis web site.

3D/.45 products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.

3D/.45 is the worldwide trading name of 3D/z4s5 Inc. Ltd.

3D/.)5, GLINT R4 and PERMEDIA are registered trademarks of 3D/z4s Inc. Ltd.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of
Microsoft Corp. in the United States and/or other countries. OpenGL is a registered
trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and
recognized.

© Copyright 3D/abs Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http:/ /www.3dlabs.com

3D/abs 1.td. 3D/xhs KK
Meadlake Place Shiroyama | T Mori Bldg 16F
Thorpe Lea Road, Egham 40301 Toranomon
Surrey, TW20 8HE Minato-ku, Tokyo, 105, Japan
United Kingdom Tel: +81-3-5403-4653
Tel: +44 (0) 1784 470555 Fax: +91-3-5403-4646
Fax: +44 (0) 1784 470699
3D/.bs Inc.

480 Potrero Avenue
Sunnyvale, CA 94086,
United States
Tel: (408) 530-4700
Fax: (408) 530-4701

3D/.b5 Proprietary and Confidential i

Contents

GLINT R4 Programmer’s Guide Volume llI

Change History

Document | Issue | Date Change

160.4.3 1 1 Dec 99 First DRAFT Issue.

160.4.3 2 20 Jan 2000 Delta Programming example, many updates from P4 to R4
160.4.3 3 18 June 2001 various corrections 280100; fixed example values for stencil

position and width, GID, in Initialization, removed index
entries and last vestiges of FBReadMode, deleted windowbase
references, corrected GID test control no longer in Windows
reg, Stencil source data field, 140601;

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI

Contents

Contents
Propr1etary INOTCE ..ot i
Change HISTOIYcuoviiiiiic e il
COMERIIES -ttt ettt ettt ettt et et et e st et e b e et et eseme et ea et e s eme st e s et e s e st e s et emt et es e et e b et esen et ebent et es et esent et eseneetens il
FOG, ANTIALIAS AND ALPHA TEST ..ot 13-1
13,1 FOG Uttt 13-1
13.1.1 Fog Index Calettlation................vv.oveesveoeeeoseoseoseeeeoeeeoeeeeeeeeoeeeee e 13-1
1312 B0 Tablew. ..ottt 13-2
13.1.3 FOG APPLICAIION ... 13-3
13.1.4 FOGMOE F0GISLEN ...t 13-4
R T O N 13-5
13.2 Alpha Test UnIt. .o 13-7
13.2.1 ABaTES vt 13-7
3.2 ROQISIES..ovvoeeeoeeeeeeeeoeeeoeee e 13-7
13.2.3 ALPha Test EXAMPLe...........cooiiseiiieiiiiee e 13-8
FRAMEBUFFER READ/WRITEcooiii i 14-1
14.1.1 Standard Framebuffer Read OPerationc...ccccumviiiiimiiiimniiiiiiiiiiiiisiiiiiiiiieieaiiien 14-1
14.1.2 Framebuffer Read Span OPerationsccceviviumiiiiimiiiimiiiiiiiiiiieiiiesiiiiiiiiiisiieesieaea 14-2
14.1.3 Merge-copy SPam OPErations..........c..cocueeriiiiimmiiimiiiiaiii i 14-2
ALPHA BLENDING ... 15-1
1517 INtEOAUCHON cteeieieteieieeee ettt ettt ettt se et e s et sesen s et ene et et eneeseneesesaneseneesesesesensnnas 15-1
1501 Alpha Blend FUNCtIOns............oo..oveooeeooeeeoseoeeeoeeeeoeeoeeoeee oot 15-1
15.1.2 Alpha Blend Registers...............o..ovveoovveoseeoeveoseeeoeeoeeeeeeeee e 15-2
15.2 Source Blending FUNCHONSooiiiiiiiiiciicc e 15-2
15.2.1 OPenGL Alpha BIRAing...............oov.ooeveoeeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeee e 15-2
15.3 Destination Blending FUnCHONS.ooveviiiieiiicieicecc e 15-3
15.3.1 OpenGL Destination BINding.........o...ovv.ooveeoeeeeooseoseeeoeeeoseeeoseesesseeosseesseeseesseosseeosseesseone 15-3
15.3.2 QuickDraw 3D Alpha BIendingoovv.oovveeoeveooeeeooeeeeoeeeeoeeseeeeeeeeeeeeeeseeeeee e 154
15.3.3 DIAGE FOVTAIIING 1..vvovss i ettt ettt ettt as sttt 15-4
I 2 SN 15-5
15.3.5 CIPOMG TEHNG..oovvvoooeeeeeoeeeeeoeeeeeee et 15-9
15.3.6 Alpha Blend EXample...................ooc.oveeoveeooeeeoeeeoeseeeeeeoeeeeeeeeseee oo 15-11
COLOR FORMAT AND LOGICAL OPSoiiiiiiiiiiiiiiiiiiiiieiiiieiiineinneieeeen e 16-1
16.1 Color and Alpha FOrmats.........ccoooiiiiiiiii e 16-1
16.1.1 COLOP DIZEBDCIING .ot 16-4
3D/.b5 Proprietary and Confidential iii

Contents GLINT R4 Programmer’s Guide Volume llI
16.1.2 ROGISTES e 16-5
16.1.3 Dither EXAMPL. ... 16-6
16.1.4 3:3:2 Color Formar EXamplecooiuiuiiuiiiiiiiiiiiiiiieisie ettt 16-6
16.1.5 8:8:8:8 Color Format Exampleccccocvvmiiiimiiiiiiiiiiiiiiiiiiiiiiiieisseea e 16-6
16.1.6 Color Index Format EXmple...............ccccocviiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiae et 16-7

16.2 Lo@Ical OP Ui 16-7
16.2.1 High Speed Flat Shaded Rendering...................occoovviiiimiiiiimiiiiiiiiiiiiiiiiiiiiiiiieeiee 16-7
16.2.2 LOGical OPrationscoocuuieiiiisiiiisies et 16-8
16.2.3 ROGISTES i 16-8
16.2.4 XOR EXAIPLE ..o 16-9
16.2.5 Logical Op and Software Writemask Example..............cccoccvvviiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiieiiicn, 16-10
FRAMEBUFFER WRITEMASKS ...ttt aeeeees 17-1
17.1.1 SOfTUWATE W HILOHIASES ...t 17-1
17.1.2 Hardware Writemaskscccviiiiiiiiiiiiiiiiei et 17-1
17.1.3 REGISTErS ... 17-1
17.1.4 Software Writemask EXAmple............c...occciuiiiiiimiiiiiiiiiiiiiiiiiiieii e 17-1
17.1.5 Hardware Writemask EXAmple.............ccccooiiiiiviiiiiiiiiisiiiiiiiiiisiii st 17-2
HO ST OU T e et e ettt e e e et ettt bt e e e e e eeeetbaa e e e e e e eeebbnanaeeeeeeeenes 18-1

T8 FAEEIINE ..o 18-1
18.1.1 Filter Mode EXGMPLE............ccooiiiiiiiiiiiieeie e 18-1
18.1.2 SPatistic OPEFALIONS ..o 18-2
18.1.3 SYRCHIOMIZATION ..ottt 18-3
18.1.4 ROGESEOVS . 18-3
18.1.5 Picking EXAmplec..ocoiviiiiiiiiiiiiiiii e 18-5
18.1.6 SYNC IRLFUPE EXAMPIC.......voiiiiiisiiiiis e 18-6
INITIALIZATION . ittt e e e e e et te bt et e e e e e e ee bbb e e e e e e e eetebana e e eeeas 19-1

19.1 Initializing GLINT R4 ..o 19-1
19.1.1 Reset and initialisationc.ccoivieiiiiiiiiiiiiiiii e 19-1

19.2 System INItaAlZAtIONc.oviiiiiiiiiciiic s 19-2
19.2.1 P L DUS oo 19-2
19.2.2 Memory COMfIGUIATION.c.uieviisiii sttt 19-2
19.2.3 Internal Video Timing Registers........cc.cuiiiuiviiiimiiiiiiiiieiii ettt 19-3
19.2.4 Framebuffer Deprh............cocviuiiiiiiiiiiiiiiiiii et 19-3
19.2.5 SCPCN WEALD ..o 19-4
19.2.6 Screen CLIPPing REGIONc..ceviiieiiiieiiiiie e 19-4
19.2.7 Localbuffer and Framebuffer Configurationccccovvvemiiiiiiiiiiimiiiiniiiiiiiiiiniiiisiiiianiieaie 19-4

iv Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Contents

19.2.8 Host Q18 Ungto....iiiiiiiiiiiiiiiiiiii i 19-5
19.2.9 Disabling Specialized Modes..............oo...oovv.oovveeseeeoeeeeoeeeeeeeeeeseeeeseeeeeeeeeeeeeeseve e 19-6
19.3 WiIndow INIHANZATION c..cuiiiiiieiiee ettt ee e s 19-6
19.3.1 COLOT FOTTAL ...ttt 19-6
19.3.2 Setting the Window Address and Origin...........cccccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssiiis et 19-6
19.3.3 W PEEOMIASIRS. ...t 19-7
19.3.4 ERabling Writing...o..ovv.ovveoeveoeseooeeeoseeesveoseoeseeseeseeeeoeseesteeeeese s se e esseesseseeeees s, 19-7
19.4 Application INIHAlZATIONooviiiiiiiiiiiccc e 19-8
PERFORMANCE TIPS ...eeoiiiiie ettt ettt e e sttt e e e e e e e e e eaeaeeeeeeennnneenes 20-1
20,1 BlOCK WEIEES .euveieiieiiieteiieieciete ettt ettt ettt eaetet e st s e s ese s ese s et e st s esane et esesesesensesasesaneeseseeesans 20-1
20.2 Fast double buffering in a WINAOWcooviiiiiiiiiiiiccc e 20-2
20.3 Disable B Reads per pixel if not required..........ccoovviiiiiiiniiiiinicccccece e, 20-2
20.4 Improving PCI bus bandwidth for Programmed I/O and DMA ... 20-2
20.5 PCI burst transfers under Programmed I/O......ccovviiiiiiiiiiiiiiicccicccccccccceaa 20-2
20.6 Using PCI Disconnect Under Programmed I/O ..o 20-3
20.7 Using Bus Mastership (DIMA)ccooiiiiiiiiiiiiccc e 20-3
20.8 D1sabling UNILS NOL I TUSC..ucvuviiuiiiiiciiiiicicieteiicie s 20-3
20.9 Clearing the localbuffer & framebuffer ..., 20-3
20.10 Use of the Framebuffer (or Localbuffer) Bypass. ..o, 20-4
20.11 Loading Registers 10 Unit Order........cooviiuiiiiiiiiiiiccicceciecn e 20-4
20.12 Avoiding Unnecessary Register Updates.......ccoovviuiiiiiniiiiniiiiicccccc e 20-4
20.13 Hardware and Software Context DUumpsccoovoviiiiiniiiiiicccc e 20-4
20.14 Use the Memory Scratchpad RegIStersccvuiiiiiiiiiiiiiiciiiicicesccccene 20-4
20.15 MISCEllANeoUus TIPS ...cvovuiuuiiiiiciiiiciic s 20-5
APPENDICESottt e et e e e e e e e e e s e et et e e e e e e e ——aaaeaeaenaarranes 21-1
211 Pseudocode DEfINITIONSoeirieeeirieeiieeeieieie ettt ettt se e st ae e ese s eseneeneesens 21-1
21.2 Delta (Manual) Programming Example.........cccccooiiiiiiiiincccccecenne 21-3
21.3 Interpolation CalCulation. ..o 21-20
21.5.1 Color Gradient INterpolationoccueiiiiiimisiiiiiiis ettt 21-20
21.3.2 Register Set Up for Color IN1erpolationoooeoeveeoveeeeoeeeeeoeeeeoseeeoseeesseeeseeeseeeeseve 21-20
21.3.3 Calculating Depth Gradient Valeescccoocviviiiiimiiiiiiiiiiiiiiiiiiiiieiieeiieie e, 21-21
21.4 Appendix F. Accurate Rendering ..o 21-22
215 GLOSSALY .. 21-34
VOLUME HINDEX .. eiitiiiiieee ettt e ettt a e e e e e e e ettt e e e e e e e s essssnse s e e eeaeeaeeasnnnssnaeaaaaens 5

3D/.b5 Proprietary and Confidential v

Contents

vi

Proprietary and Confidential

GLINT R4 Programmer’s Guide Volume llI

3D/.bs

GLINT R4 Programmer’s Guide Volume || Fog, Antialias and Alpha Test

13

Fog, Antialias and Alpha Test

13.1

13.11

Fog Unit
The fog unit is used to blend the incoming fragment’s color or Z (generated by the color

DDA unit, and potentially modified by the texture unit) with a predefined fog color. Fogging
can be used to simulate atmospheric fogging, and also to depth cue images.

Fog application has two stages:

1. derive the fog index for a fragment;
2. apply the fogging effect.

The fog index is a value which is interpolated over the primitive using a DDA in the same
way color and depth are interpolated. The fogging effect is applied to each fragment using
one of the equations described below.

Note: Although fog values are linearly interpolated over a primitive they can be
calculated on the host using either a linear fog function (typically for simple
fog effects and depth cueing) or a more complex function e.g. an exponential
function to model atmospheric attenuation..

Fog Index Calculation

The fog index can be derived from specified fog values in FStart, dFdX and dFdYDom, or
from the Depth DDA values. This option is selected with the UseZ bit in the FogMode
register.

The fog DDA is used to interpolate the fog index (f) across a primitive. The mechanics are
similar to those of the other DDA units, as the diagram below illustrates:

3D/.bs

Proprietary and Confidential 13-1

Fog, Antialias and Alpha Test GLINT R4 Programmer’s Guide Volume ||

Figure 13-1 Fog Interpolation Over A Triangle

13.1.1.1

13.1.2

13-2

where:

+ dFdX = Fog gradient in the X direction.
« dFdyDom = Fog gradient along the dominant edge of a primitive.

Note: For fogged linesthe dFdx delta is not required.

The fog interpolation values (e.g. Fstart) are specified as 32bit fixed point numbers - the
format is 2's complement with 10 bits integer and 22 bits fraction. However the derived fog
index is an 8-bit fixed point number (0 bits integer, 8 bit fraction).

The DDA only exports a relatively narrow range (+511 to -512) compared to the range of

depths so the software needs to be careful when setting up the DDA. There are four

cases:

. If all the vertices are in the near range then the DDA should be set up to output 1.0
with a delta of 0.

- If all the vertices are in the far range then the DDA should be set up to output 0.0 with

a delta of 0.

. If all the vertices are within the DDA’s range then the DDA’s parameters are set up as
normal.

. One or more of the vertices are out of the DDA’s range and must be clamped before

the DDA's parameters are set up. (This will only occur on very large polygons which
extend from near the eye point into the far distance.)

The result of clamping the input values to the DDA will be to change the effective position
and width of the fog band (i.e. middle range), but this is unlikely to be noticeable. Ifitis
noticeable then tessellating the polygon will solve the problem.

Z-controlled Fog

The fog value (direct or mapped via the table) can be derived from the interpolated Z
value. If the UseZ hit is set in FogMode then the fog DDA is loaded by the Z DDA
parameters and tracks the Z value over the primitive. The 2’'s complement 32 bit Z value
from the DDA output is mapped to the 8 bit fog index as follows:

« Clamp Z from the DDA so it is greater than or equal to O.

« Add in the ZFogBias and clamp again to be greater than or equal to O.

« Shift right by ZShift amount.

« Clamp against 255 so the result is less than or equal to 255. This is the fog index.

The bias sets a Z value below which no blending occurs. The scale value selects the
range (as a power of 2) beyond which the fog color is used (because the fog index is set to
255).

Fog Table

Initially, the fog values populate a span register and an increment register tracks progress
along the Dominant edge. Both f-controlled and Z-controlled fog produce the 8-bit index
values which can be directly applied to interpolation or stored as a table for use in

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume || Fog, Antialias and Alpha Test

13.1.3

13.1.3.1

3D/.bs

producing more complex (non-linear) fogs with host intervention. The Fog Table is
selected using theTable bit in the FogMode register.

The fog table is organised as 256 x 8 so the 8 bit input fog index is mapped to an 8 bit
output fog index. The fog table is held in the FogTable(0) to FogTable(63) registers and
each register loads 4 entries at a time. FogTableO, byte 0 loads the mapping for fog index
0, byte 1 for fog index 1, etc..

Fog Application
Once the fog indices are calculated they are applied to interpolate the fog color and the

current color, the controlling equations depending on whether the colors are represented
in RGBA ro Cl mode. The mode selection is made with the ColorMode bit in FogMode.

RGBA Fogging Equation

Fogging is applied differently depending on the color mode. For RGBA mode the fogging
equation is:

where:

« V= outgoing color

« FC =fog color

« C =incoming fragment color

« Fl=fog index

The equation is applied to the color components red, green and blue; alpha is not
modified.

The diagram below shows how the fogging would typically affect fragments. Initially no

fogging occurs, f = 1.0, then a region of linear combination of the fragment color and fog
color occurs 0.0 < f< 1.0, followed by a region of constant fog color, f < 0.0.

Proprietary and Confidential 13-3

Fog, Antialias and Alpha Test

GLINT R4 Programmer’s Guide Volume ||

DDA output

Max Fl

1.0

Min Fl

4

DDA adder output ,

/

,/ FI after clamping.

DDA steps

13.1.3.2 CI Fogging Equation
In CI mode the equation is:

13.1.4

13-4

Note:

The CI value is held only in the red channel for later use, but doing the same
equation on all color channels keeps the control simpler. Clamping is needed
as the result can overflow the 8 hit color component range.

FogMode register

The FogMode register is used to enable and disable fogging (qualified by the fog
application bit in the Render command register).

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume ||

Fog, Antialias and Alpha Test

FogMode
FogModeAnd
FogModeOr

Name Type Offset Format

FogMode Fog 0x8690 Bitfield

FogModeAnd Fog 0xAC10 Bitfield Logic Mask

FogModeOr Fog 0xAC18 Bitfield Logic Mask

Control registers

Bits Name Read | Write | Reset | Description

0 Enable 0 B < This bit, when set, and qualified by the FogEnable bit
in the Render command causes the current fragment
color to be modified by the fog coefficient and
background color.

1 ColorMode 0 B x This bit selects the color mode. The two options are:
0 = RGB. The RGB fog equation is used.

1 = CI. The Color Index fog equation is used.

2 Table 0 N X This bit, when set, causes the Fog Index to be mapped
via the FogTable before it controls the blending
between the fragment's color and the fog colot,
otherwise the DDA value is used directly.

3 UseZ 0 B x This bit, when set, causes the DDA to be loaded with
the Z DDA values instead of the Fog DDA values. It
also adjusts the clamping of the DDA output.

4...8 ZShift 0 N X This field specifies the amount the (z from DDA +
zBias) is right shifted by before it is clamped against
255 and the bottom 8 bits used as the fog index. This
should also take into account the number of depth bits
there are.

9 InvertFI 0 N < This bit, when set, inverts the fog index before it is
used to interpolates between the fragment's color and
the fog color. This is usually 0 when fog values are
used and 1 for Z values. Fog values are set up so they
decrease with increasing depth and obviously Z values
increase with increasing depth.

10...31 Unused 0 0 X

Figure 13-2 FogMode Register

13.1.5 Fog Example

3D/.bs

In addition to the ColorMode, Table and UseZ bits, FogMode allows inversion of the fog

index before interpolation using InvertFI.

A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white:

Proprietary and Confidential 13-5

Fog, Antialias and Alpha Test

13-6

// Enable the color DDA unit in Gouraud shading
// mode

colorDDAMode.UnitEnable = GLINT R4_ENABLE

GLINT R4 Programmer’s Guide Volume ||

colorDDAMode.Shade = GLINT R4_GOURAUD_SHADE_MODE

ColorDDAM ode(colorDDAM ode)

// Enable the Fog unit

fogMode.FogEnable = GLINT R4_TRUE
fogMode.ColorMode = GLINT R4_RGBA_MODE
FogM ode(fogM ode)

/I Set the fog color to white

FogCol or(OxFFFFFFFF)

/I Load the color start values and deltas for

/I dominant edge and the body of the trapezoid

Rstart() // Set-up the red component start value
dRdX() // Set-up the red component increments
dRdY Dom()

Gstart() // Set-up the green component start value
dGdX() // Set-up the green component increments
dGdY Dom()

Bstart() // Set-up the blue component start value
dBdX() // Set-up the blue component increments
dBYDom()

Il Load the start value and delta for dominant edge
// and the body of the trapezoid

/I Note that the fog deltas are calculated in the

I/l same way as the color deltas

FStart() // Set-up the fog component start value
dFdX() // Set-up the fog component increments
dFdYDom()

// When issuing a Render command the FogEnable bit
I/ should be set in addition to the fog unit being

/1 enabled:

I/ render.FogEnable = GLINT R4 _TRUE

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume || Fog, Antialias and Alpha Test

13.2 Alpha Test Unit

The alpha test compares a fragment'’s alpha value with a reference value. Alpha testing is
not available in color index (CI) mode.

13.2.1 Alpha Test

The alpha test conditionally rejects a fragment based on the comparison between a
reference alpha value and one associated with the fragment, the available tests are:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equal 6 Greater Than or Equal
3 Less Than or Equal 7 Always

Table 13.1 Alpha Test Comparison Tests

The sense of the test is such that if the comparison mode is set to Less and the reference
value is set to 0x80, then fragments with alpha values between 0x0 and Ox7F will pass the
test and fragments with alpha values between 0x80 and OxFF will fail the test and be
rejected.

13.2.2 Registers
The AlphaTestMode register controls the alpha test:

Name Type Offset Format
AlphaTestMode AlphaBlend 0x 8800 Bitfield
AlphaTestModeAnd AlphaBlend 0x ABFO Bitfield Logic Mask
AlphaTestModeOr AlphaBlend 0Ox ABF8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0 Enable 0 N X When set causes the fragment's alpha value to be

tested under control of the remaining bits in this
register. If the alpha test fails then the fragment is
discarded. When this bit is clear the fragment alway
passes the alpha test.

0 = Disable 1 = Enable
1...3 Compare 0 N X This field defines the unsigned comparison function to
use. The options are:
0 = Never 1 = Less
2 = Equal 3 = Less Equal
4 = Greater 5 = Not Equal

6 = Greater Equal 7 = Always
The comparison order is as follows:
Result = fragment, Alpha Compare Function,
reference, Alpha.

4...11 Reference 0 N X This field holds the 8 bit reference alpha value used in

the comparison.

3D/.b5 Proprietary and Confidential 13-7

Fog, Antialias and Alpha Test GLINT R4 Programmer’s Guide Volume ||

[12...31 | Unused [0 |0 | X
Figure 13-3 AlphaTestMode Register

13.2.3 Alpha Test Example
Set the alpha test mode to be LESS and the reference value to be 0x80:
// Enable unit and set modes

aphaMode.UnitEnable= GLINT R4_ENABLE

alphaMode.Compare = GLINT R4_ALPHA_COMPARE_MODE_LESS
aphaM ode.Reference = 0x80

AlphaM ode(a phaM ode) I/l Load register
Il Render primitives

13-8 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Framebuffer Read/Write

14

Framebuffer Read/Write

14.11

Before rendering can take place GLINT R4 must be configured to perform the correct
framebuffer read and write operations. Framebuffer read and write modes affect the
operation of alpha blending, logic ops, writemasks, image upload/download operations
and the updating of pixels in the framebuffer.

The framebuffer read and write units are set up in different ways depending on whether
Span Operations are being used. Normally, span operations are used for 2D rendering in
order to maximize memory bandwidth. Span operations allow multiple pixels to be read
and processed in parallel. The following sections discuss the use of the framebuffer read
and write units for both standard operation and span operations.

Standard Framebuffer Read Operation

The FBSourceReadMode and FBDestReadMode registers allows GLINT R4 to be
configured to make 0, 1 or 2 reads of the framebuffer. The following are the most common
modes of access to the framebuffer:

» Rendering operations with no logical operations, software writemasking or alpha
blending. In this case no read of the framebuffer is required and framebuffer writes
should be enabled.

« Rendering operations which use logical ops, software writemasks or alpha blending. In
these cases the destination pixel must be read from the framebuffer and framebuffer
writes must be enabled. (Here set-up varies depending what functionality is required. If
alpha blending, logic ops or software writemasks are used the framebuffer is read twice
i.e. both the source and the destination. When alpha blending and logic ops are not
needed, and hardware writemasks are used (or when the software writemask allows
updating of all bits in a pixel) only one read is required.)

* Image upload. This requires reading of the destination framebuffer pixels to be enabled
and framebuffer writes to be disabled.

* Image download. This case requires no framebuffer reads (as long as software
writemasking, alpha blending and logic ops are disabled) but writes must be enabled.

The data read from the framebuffer may be tagged either FBDefault (data which may be
written back into the framebuffer or used in some manner to modify the fragment color) or
FBColor (data which will be uploaded to the host). Table 14.2 Framebuffer Read/Write
Modes summarizes the framebuffer read/write control for common rendering operations:

ReadSource |Read Writes Read Data |Rendering Operation
Destination Type
Disabled Disabled Enabled - Rendering with no logical operations, software

writemasks or blending.

Disabled Disabled Enabled - Image download.

Disabled Enabled Disabled FBColor Image upload.

Enabled Disabled Enabled FBDefault |Image copy with hardware writemasks and no
alpha blending orlogical operations

3D/.b5 Proprietary and Confidential 14-1

Framebuffer Read/Write GLINT R4 Programmer’s Guide Volume llI

Disabled Enabled Enabled FBDefault |Rendering using logical operations, software
writemasks or blending.

Enabled Enabled Enabled FBDefault |Image copy with software writemasks, alpha
blending or logic ops.

Table 14.2 Framebuffer Read/Write Modes

14.1.2

14.1.3

14-2

Framebuffer Read Span Operations

As well as performing standard, single pixel at a time, read operations the framebuffer
read unit can be used to process span operations. The simplest type of operation is where
a span mask is presented to the read unit and the ReadSource bit is enabled. This will
cause the unit to read a complete span of pixels from the framebuffer in a 64-bit packed
format. The data is always read as a set of 64 bit words. This allows maximum use of both
memory and core bandwidth since multiple pixels are being processed.

Since a span mask may not necessarily have all its bits set to 1 (i.e. only a subset of pixels
in the span need to be processed), it would be wasteful of memory bandwidth to always
read the complete span. For example, at the right hand edge of a rectangle which is being
copied, we want the read unit to only read up to the rightmost pixel but not beyond.
Whether a 64 bit word is read depends on the corresponding bit values in the span mask.
Since each bit in the mask represents a pixel, either 1, 2 or 4 bits will represent a 32 bit
word for the depths 32, 16 and 8 bits respectively. If the group of bits representing a 32 bit
word is non-zero then the corresponding 32 bits will be read from the framebuffer. Thus:

« at 32 bits per pixel, a single bit in the span mask corresponds to 32 bits in the
framebuffer and 32 bit words will be read only at those locations where the
corresponding bit in the span mask is a 1.

« at 16 bits per pixel, 2 bits in the span mask represent 32 bits in the framebuffer. A 32
bit word will be read only at those locations where the corresponding 2 span bits form
a non-zero value.

« at 8 bits per pixel, a 32 bit word will be read only at those locations where the
corresponding 4 span bits form a non-zero value.

The number of 32bit words read from the framebuffer is thus a function of the span mask
and the number of bits per pixel, though this is not normally of interest to the programmer.
However, the number of 32bit words becomes important for span operations where the
data is downloaded from the host. For example, an image download operation using a
span operation only requires those 32 bit words which contain required pixel data to be
downloaded. Some examples of this are given later.

Merge-copy Span Operations

To understand the way in which the read units works we will examine the way in which a
span operation with a logic op works. In particular we consider the case where both
ReadSource and ReadDestination bits are set in the FBReadMode register. For example,
this would be the case when copying data within the framebuffer with an xor logic op.

To perform this operation, the framebuffer read unit must read both a source span of data
and a destination span of data. These spans must then be merged so that the data
presented to the logic op unit consists of source and destination pairs. Since the logic op
unit can combine up to 32 bits at a time, the data can be presented in the form of packed
32 bit words (at 8 bits per pixel this means that the logic op unit can work on 4 pixels at a
time).

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Framebuffer Read/Write

It would be wasteful of memory bandwidth to read 32 bits from the source followed by 32
bits from the destination. This would result in too many memory page breaks. So the read
unit reads a complete source span and stores it internally as Pattern RAM in the local
buffer. Then the destination span is read. As the destination span is read, it is merged with
the saved source span data so that the data which the logical op unit sees comprises
corresponding sections of source and destination data. The logic op unit can then combine
this data and present a series of 32 bit results to the framebuffer write unit.

The Pattern RAM is so named because it can be used for pattern filling operations and
was a distinct area of memory in previous Permedia chipsets.

3D/.b5 Proprietary and Confidential 14-3

GLINT R4 Programmer’s Guide Volume llI Alpha Blending

15

Alpha Blending

15.1

In this chapter we discuss alpha blending. The alpha blend unit performs opacity
calculations on the color and alpha components of pixel fragments according to functions
defined in the color mode and alpha mode alpha blend registers:

« Source Blending Functions

« Destination Blending Functions

« Color Component Alpha Blending

« Alpha Component Alpha Blending

« Context Switching

« Registers

+ Readback

Introduction

The alpha value is an opacity gradient, with the value of O representing complete
transparency and a value of 1 representing complete opacity.

Both source and destination pixels have associated blending functions that perform
calculations to set opacity values before blending the two pixel values occurs.

15.1.1 Alpha Blend Functions

15-1

Alpha blending functions are performed on both color components and alpha components.
The alpha blend unit performs the following functions:

« Calculates opacity on incoming (source) pixel information
- Calculates opacity on existing framebuffer (destination) pixel information
« Blends the source and destination pixel information into a new pixel value

There are 3 source inputs for both RGB and Alpha: Arg0, Argl and Arg2. Arg2 is always
the interpolator. The opmodes behave as follows:

GL_REPLACE Arg0
GL_MODULATE Arg0 * Argl
GL_ADD Arg0 + Argl

GL_ADD_SIGNED_EXT Arg0 + Argl - 128
GL_INTERPOLATE_EXT Arg0 * Arg2 + Argl * (1 - Arg2)

Each source can come from one of:
GL_PRIMARY_COLOR_EXT color of incoming fragment
GL_TEXTURE texel of corresponding stage

Proprietary and Confidential 3D/.bs

Alpha Blending

15.1.2

GLINT R4 Programmer’s Guide Volume Il

GL_CONSTANT_EXT
GL_PREVIOUS_EXT

texture enviroment blend color

result of combine from previous unit (always incoming
fragment if stage 0)

In addition the RGB channels can specify the alpha component (i.e replicate the alpha into
rgb).
The Blend unit also has an effect on compositing and border textures.

Alpha Blend Registers
The alpha blend registers comprise the following segments:

« Alpha Blend Color Operations

« Alpha Blend Alpha Operations

« Alpha Source Color Assignments

« Alpha Destination Color Assignments
« Chroma Test Operations

« 2D Configuration Operations

« Context Operations

Blending occurs in color mode and alpha mode alpha blend registers, called
AlphaBlendColorMode and AlphaBlendAlphaMode, respectively.

The AlphaBlendColorMode register assigns blend functions to color components R, G
and B, and the AlphaBlendAlphaMode register assigns a blend function to the alpha
component, A.

15.2 Source Blending Functions
Source blending function components are defined in the source blend bits of the
AlphaBlendColorMode and AlphaBlendAlphaMode registers. The functions correspond
to OpenGL source blending parameters.

15.2.1 OpenGL Alpha Blending
The alpha blend unit combines the fragment’s color value to be stored in the framebuffer,
using the blend equation:
Co = CeS + CgD
where: Co is the output color, Cs is the source color (calculated internally) and Cd is the
destination color read from the framebuffer.
The source blending function, S, and the destination blending function, D, are defined in
the following tables:

Mode |Value R G B A

0 Zero 0 0 0 0

1 One 1 1 1 1

2 Destination Colotr Ry Gy By Ag

3 One Minus Destination Color 1-Rqg 1-Gg 1-Bg 1-Aq

15-2 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Alpha Blending

4 Source Alpha Ag Ag Ag Ag
5 One Minus Source Alpha* 1-Ag 1-Ag 1-Ag 1-Ag
6 Destination Alpha Aq Ad Ad Aq
7 One Minus Destination Alpha 1-Aq 1-Aq 1-Aq 1-Aq
8 Source Alpha Saturate Min of min of min of 1

A 1-Ad) A5 1-Ag) (A5 1-Ag)

Table 15.3 Source Blending Functions

The terms in the equations are in the form Cxy, where x denotes source component (s) or
destination component (d), and y denotes color componentr, g, b, or a, for Red, Green,
Blue, or Alpha, respectively.

Note: Values are defined as floating point numbers. All source color component
values are in the range 0 to 1.0 inclusive as defined in, eg. OGL texture
environment color parameters (GL_TEXTURE _ENV_COLOR).

<
Q
(=
(¢}

Value

Zero

One

Source Color

=~

One Minus Source Color

i

Source Alpha

One Minus Source Alpha - Ag
Destination Alpha Aq Ad Ad Aq

One Minus Destination Alpha 1-Aq 1-Aq 1-Aq 1-Aq

~N| | |]| W] N—]O

Table 8.4 Destination Blending Functions

15.3 Destination Blending Functions

Destination blending function components are defined in the DestBlend bits of the
AlphaBlendColorMode register and the AlphaBlendAlphaMode registers. If the blend
operations require any destination color components then the framebuffer read mode must
be set appropriately.

15.3.1 OpenGL Destination Blending
The destination blending corresponds to OpenGL source blending parameters.

In some situations blending is desired when no retained alpha buffer is present. In this
case the alpha value which is considered to be read from the framebuffer is set to 1.0. The
NoAlphaBuffer bit in the AlphaBlendAlphaMode register controls this.

The terms in the blend equations are in the form Cxy, where x denotes source component
(s) or destination component (d), and y denotes color componentr, g, b, or a, for Red,
Green, Blue, or Alpha, respectively.

One Minus Value is sometimes referred to as Inverse Value.

15-3 Proprietary and Confidential 3D/.bs

Alpha Blending GLINT R4 Programmer’s Guide Volume Il

15.3.1.1

15.3.2

Blend values are defined as floating point numbers. All source color component values
should be clamped in the range 0 to 1.0 inclusive.

In addition to gIBlendFunc, GLINT R4 supports OGL texture functions described in
GL_TEXTURE_ENV_MODE during texture compositing and application. Support for
GL_texture_env_combine_EXT is enabled by calling TexEnv with GL_ TEXTURE _
ENV_MODE set to GL_COMBINE_EXT. This allows user to explicitly set up the fragment
operations for the RGB and Alpha channels - in particular, GL_ALPHA, GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB and GL_RGBA. This allows full texture function
implementation in both TextureO and Texturel. The equations for each case are as
described in The OpenGL Reference Manual and The OpenGL Programming Guide from
Addison-Wesley.

Embossed bump-mapping

Special ENV_MODE support is available in the GLINT R4 when this extension is used for
embossed bump-mapping. Normally GL_PREVIOUS EXT maps onto GL_PRIMARY _
COLOR_EXT for stage0. However when the EnableBumpHeightAsSource flag is true,
GL_PREVIOUS_EXT uses the difference between texture stagel and stageO alpha
channels for the source input for stageO:

clamp(tex0.alpha - tex1.alpha+ 128

This difference when replicated into the rgb channels can be used to modulate the other
input to make it lighter or darker. The alpha channel is the same in each stage, but is read
offset in the second stage relative to the first stage.

QuickDraw 3D Alpha Blending

When the AlphaType bit in the AlphaBlendAlphaMode register is set then QuickDraw 3D
style alpha blend equations are followed. The OpenGL equations above are used for the
RGB components, but the alpha channel is treated differently and has a single source and
destination blend functions as follows:

Ca=1-(1-Cgq) *(1-Cda)

The source and destination blend functions should be set as follows:

Name Source Blend Destination Blend
Pre—multiplied ONE ONE_MINUS_SRC_ALPHA
Interpolated SRC_ALPHA ONE_MINUS_SRC_ALPHA

Table 15.5 Source Blending Functions

15.3.3

15-4

The alpha calculation is the same for both modes.

Image Formatting

The alpha blend and color formatting units can be used to format image data into any of
the supported GLINT R4 framebuffer formats, though conversion between Cl and RGB
modes or vice versa are not supported.

Consider the case where the framebuffer is in RGBA 4:4:4:4 mode, and an area of the
screen is to be uploaded and stored in an 8 bit RGB 3:3:2 format. The sequence of
operations is:

« Set the rasterizer as appropriate (described in Volume II, Rasterizer)
« Enable framebuffer reads

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Alpha Blending

- Disable framebuffer writes and set the UpLoadData bit in the FBWriteMode register

« Enable the alpha blend unit with a blend function which passes the destination value
and ignores the source value (source blend Zero, destination blend One) and set the
color mode to RGBA 4:4:4:4

« Set the color formatting unit to format the color of incoming fragments to an 8 bit RGB
3:3:2 framebuffer format.

The upload now proceeds as normal.

The same technique can be used to download data which is in any supported framebuffer
format, in this case the rasterizer is set to sync with FBData, rather than Color. In this case
framebuffer writes are enabled, and the UpLoadData bit cleared.

15.3.4 Registers
The unit is controlled by the AlphaBlendAlphaMode and AlphaBlendColorMode registers:

15-5 Proprietary and Confidential 3D/.bs

Alpha Blending

AlphaBlendAlphaMode
AlphaBlendAlphaModeAnd
AlphaBlendAlphaModeOr

GLINT R4 Programmer’s Guide Volume Il

Name Type Offset Format
AlphaBlendAlphaMode Alpha Blend 0x AFAS8 Bitfield
AlphaBlendAlphaModeAnd Alpha Blend 0x AD30 Bitfield Logic Mask
AlphaBlend AlphaModeOr Alpha Blend 0x AD38 Bitfield Logic Mask
Control registers
Bits Name Readl | Write | Reset | Description
0 Enable N N X When set causes the fragment's alpha to be alpha
blended under control of the remaining bits in this
register. When clear the fragment alpha remains
unchanged (but may later to affected by the chroma
test).
1...4 SourceBlend N N X This field defines the source blend function to use.
See the table below for the possible options.
5...7 DestBlend N N X This field defines the destination blend function to
use. See the earlier table for the possible options.
8 Source N N X This bit, when set causes the source blend result to be
TimesTwo multiplied by two before it is combined with the dest
blend result. When this bit is clear no multiply occurs.
9 DestTimes N N X This bit, when set causes the dest blend result to be
Two multiplied by two before it is combined with the
source blend result. When this bit is clear no multiply
occurs.
10 Invert Source 0 0 X This bit, when set, causes the incomming source data
to be inverted before any blend operation takes place.
11 Invert Dest 0 0 X This bit, when set, causes the incomming dest data to
be inverted before any blend operation takes place.
12 NoAlpha 0 0 X When this bit is set the source alpha value is always set
Buffer to 1.0. This is typically used when no retained alpha
buffer is present but alsos overrides any retained alpha
value if one is present. Color formats with no alpha
field defined automatically have their alpha value set to
1.0 regardless of the state of this bit.
13 Alpha Type 0 0 X This bit selects which set of equations are to be used
for the alpha channel.
0 = OpenGL
1= Apple

1 Logic Op register readback is via the main register.

15-6

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume llI Alpha Blending

14 Alpha 0 0 X This bit selects how alpha component less than 8 bits
Conversion wide are converted to 8 bit wide values prior to the
alpha blend calculations. The options are
0 = Scale
1 = Shift
15 Constant N O X This bit, when set, forces the Source color to come
Source from the AlphaSourceColor register (in 8888 format)

instead of the framebuffer.
0 = Use framebuffer alpha
1 = Use AlphaSourceColor register alpha value.

16 Constant Dest | [] O X This bit, when set, forces the destination color to
come from the AlphaDestColor register (in 8888
format) instead of the fragment's color.

0 = Use fragment's alpha.

1 = Use AlphaDestColor register alpha value

17...19 Operation 0 0 X This field selects how the source and destination blend
results are to be combined. The options are:

0= Add 1 = Subtract (i.e. S - D)

2 = Subtract reversed (i.e. D - S)

3 = Minimum 4 = Maximum

15-7 Proprietary and Confidential 3D/.bs

Alpha Blending GLINT R4 Programmer’s Guide Volume Il

Notes

The Alpha Conversion bit selects the conversion method for alpha values read from the framebuffer.

. The Scale method lineatly scales the alpha values to fill the full range of an 8 bit value. This
method is preferable when, for example, downloading an image with fewer bits per pixel into a
deeper (i.e. more bits per pixel) framebuffer.

. The Shift method just left shifts by the appropriate amount to make the component 8 bits wide.
This method is preferable when blending into a dithered framebuffer as it preserves the
framebuffer alpha when fragment alpha does not contribute to it.

Alpha is controlled separately from color to allow, for example, the situation in antialiasing where it

represents coverage - this must be linearly scaled to preserve the 100% covered state.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

The table below shows the different color modes supported. In the R, G, B and A columns the
nomenclature n(@m means this component is n bits wide and starts at bit position m in the
framebuffer. The least significant bit position is 0 and a dash in a column indicates that this
component does not exist for this mode.

In the case of the RGB formats where no Alpha is shown then the alpha field is set to 255. In this case
the NoAlphaBuffer bit in the AlphaBlendAlphaMode register should be set which causes the alpha
component to be set to 255.

Two color ordering formats are supported, namely ABGR and ARGB, with the right most letter
representing the color in the least significant part of the word. This is controlled by the Color Otder
bit in the .AphaBlendColorMode register, and is easily implemented by just swapping the R and B
components after conversion into the internal format. The only exception to this are the 3:3:2 formats
where the actual bit fields extracted from the framebuffer data need to be modified as well because the
R and B components are differing widths. CI processing is not effected by this swap and the result is
always on internal R channel.

The format to use is held in the A/phaBlendColorMode register. Note that in OpenGL the alpha blending
is not defined for CI mode..

When converting a Color Index value to the internal format any unused bits are set to zero

Figure 15-1 AlphaBlendAlphaMode Register

15-8

The ColorConversion bit selects the conversion method for RGB values read from the
framebuffer.

The Scale method linearly scales the color values to fill the full range of an 8 bit value.
This method is preferable when, for example, downloading an image with fewer bits per
pixel into a deeper (i.e. more bits per pixel) framebuffer.

The Shift method just left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it preserves
the framebuffer color when fragment color does not contribute to it. The scale method
would otherwise cause the ‘fraction’ bits to be non zero, which may result in a different
color when re-dithered again. This shows up as a faint outline of the underlying polygon,
when, for example, an alpha blended texture is used with zero value to provide cut-outs.

The AlphaConversion bit selects the conversion method for the Alpha values in a similar
way. Itis controlled separately to allow, for example, the situation in antialiasing where it
represents coverage - this must be linearly scaled to preserve the 100% covered state.

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Alpha Blending

15.3.5

The alpha blend can be augmented by a chroma test, discussed next.

Chroma Testing

Chroma test involves testing a fragment’s color against a range of colors. The fragment
can then be rejected based on the outcome. The framebuffer source color, framebuffer
destination color and the fragment’s color before or after alpha blending can all be used for
the test.

The source and destination keying are needed by DirectX for its chroma key blts.

Rejecting a fragment based on its color can be used to prevent writes where the
destination color does not change. For example a fogged fragment which has the same
color as the background fog color does not need to be written if the screen was cleared to
the fog color.

The chroma test is given by:

where Cl is the lower chroma value held in the ChromalLower register, Cu is the upper
chroma value held in the ChromaUpper register and T is the selected color to test
against. Each component is tested separately and obviously a component can be
excluded from the test by setting the lower and upper values to 0 and 255 respectively.

The format of the ChromaLower and ChromaUpper registers is the red byte is in the
least significant byte, then the green byte and finally the blue byte. If the framebuffer

format for a color component is less than 8 bits then the unused bits in the upper and

lower register for this component are set to zero.

The chroma test is enabled when the Enable bit in the ChromaMode register is set. The
source color to test is given by the Source field. The sense of the chroma test is controlled
by the Sense bit - the effect shown in the table below:

Chroma Test Test Result ChromaSense |Action
Enabled

X X [The framebuffer is updated as normal

False Include The framebuffer is not updated
True Include The framebuffer is updated as normal
False Exclude The framebuffer is updated as normal

<z

True Exclude The framebuffer is not updated

The format of the ChromaTestMode register is:

ChromaTestMode
ChromaTestModeAnd
ChromaTestModeOr

Name

Type Offset Format

ChromaTestMode Alpha Blend 0x8F18 Bitfield
ChromaTestModeAnd Alpha Blend 0xACCO Bitfield Logic Mask
ChromaTestModeOr Alpha Blend 0xACC8 Bitfield Logic Mask

15-9

Control registers

Proprietary and Confidential 3D/.bs

Alpha Blending GLINT R4 Programmer’s Guide Volume Il

Bits Name Read?2 | Write | Reset | Description

0 Enable O O X When set enables chroma testing under control
of the remaining bits in this register. When clear
no chroma test 1s done.

1...2 Source 0 N X This field selects which color (after any suitable
conversion) is to be used for the chroma test. The
values are:

0 = FBSourceData

1 = FBData

2 = Input Color (from fragment)

3 = Output Color (after any alpha

blending)
3.4 PassAction 0 N X This field defines what action is to be taken if the
chroma test passes (and is enabled). The options are:
0 = Pass
1 = Reject

2 = Substitute ChromaPassColor
3 = Substitute ChromaFailColor

5...6 FailAction 0 0 X This field defines what action is to be taken if the
chroma test fails (and is enabled). The options ate:
0 = Pass
1 = Reject
2 = Substitute ChromaPassColor
3 = Substitute ChromaFailColor

7...31 Unused 0 0 X

Notes: Used to test the fragment’s color against a range of colors after alphablending. The chroma test is
enabled by the enable bit (0) in the register. Note: incompatible with MX programming.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

The color format and order is needed as the destination color is read from the framebuffer
and needs to be converted into the internal GLINT R4 representation, it should therefore
be set as appropriate for the framebuffer.

2 Logic Op register readback is via the main register only

15-10 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Alpha Blending

Internal Color Channel
Format Name R G B A
0 8:8:8:8 3@0 3@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12
Color 3 4:4:4:4Front 4@0 4@8 4@16 4@?24
Otrder: 4 4:4:4:4Back 4@4 4@12 4@?20 4@?28
BGR 5 3:3:2Front 3@0 3@3 2@6 255
6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2(@5 1@7 255
13 5:5:5Back 5@16 5@?21 5@26 255
0 8:8:8:8 8@16 3@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
Color 3 4:4:4:4Front 4@16 4@8 4@0 4@?24
Otrder: 4 4:4:4:4Back 4@?20 4@12 4@4 4@?28
RGB 5 3:3:2Front 3@5 3@2 2@0 255
6 3:3:2Back 3@13 3@10 2@8 255
8 1:2:1Back 1@7 2@5 1@4 255
7 1:2:1Front 1@3 2@1 1@0 255
13 5:5:5Back 5@?26 5@?21 5@16 255
CI 14 CI8 3@0 0 0 0
15 CI4 4@0 0 0 0

Table 15.6 GLINT R4 Color Modes

The framebuffer may be configured to be RGBA or Color Index (Cl). The R, G, B and A
columns show the width of each color component. n@m means that n bits starting at bit
position m are read and scaled to fit the 8bit internal color channel format. The least
significant bit position is zero. A numerical value (0 or 255) indicates the value substituted
when the corresponding channel does not exist in the framebuffer.

For the Front and Back Modes the value to be blended is read only from the low bits or
high bits respectively. This is to assist with color space double buffering.

15.3.6 Alpha Blend Example

This example sets the blend mode to allow antialiasing of polygons, i.e. source blend
function = Source Alpha Saturate, destination blend function = One. These blend functions
are suitable for polygon antialiasing when polygons are drawn in front to back order, and
the depth test is disabled.

// Enable framebuffer reads allow blend operation
// - Not Shown -

I/ Set the a pha mode.
15-11 Proprietary and Confidential 3D/.bs

Alpha Blending GLINT R4 Programmer’s Guide Volume Il

aphaBlendColorMode.Enable = GLINT R4_ENABLE
alphaBlendColorMode.SourceBlend = GLINT R4_BLEND_SRC_ALPHA_SATURATE
alphaBlendColorM ode.DestinationBlend = GLINT R4_BLEND_ONE
alphaBlendColorM ode.ColorFormat = as appropriate

AlphaBlendCol orM ode(al phaBlendCol orM ode) // Load register
// Enable antialias application and disable

// depth testing

I/l - Not Shown -

// Render polygons sorted front to back with

I/l Coverage Enable hit set in the Render command
I/l - Not Shown —

15-12 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI

Color Format

16

Color Format and Logical Ops

16.1

The color format unit converts from GLINT R4’s internal color representation to a format
suitable to be written into the framebuffer. This process may optionally include dithering of
the color values for framebuffers with less than 8 bits width per color component. If the unit
is disabled then the color is not modified in any way.

Color and Alpha Formats

GLINT R4 separates the Alpha and Color format information into two new registers
(AlphaBlendColorMode and AlphaBlendAlphaMode). The AlphaBlendMode register is
not supported.

The color format is held in the AlphaBlendColorMode register. Note that in OpenGL
alpha blending is not defined for Cl mode. Raw framebuffer formats from local memory are
only converted to 8-bit formats in the AlphaBlend registers.

Alpha is controlled separately from color to allow, for example, the situation in antialiasing
where it represents coverage - this must be linearly scaled to preserve the 100% covered
state.

The table below shows the different color modes supported. Inthe R, G, B and A columns
the nomenclature n@m means the component is n bits wide and starts at bit position m in
the framebuffer. The least significant bit position is 0 and a dash in a column indicates
that this component does not exist for this mode.

In the case of RGB formats where no Alpha is shown, the alpha field should be set to 255.
Use the NoAlphaBuffer bit in the AlphaBlendAlphaMode register to do this.

GLINT R4 supports two color-ordering formats: ABGR and ARGB. The rightmost letter
represents the color in the least significant part of the word. This is controlled by the
ColorOrder bit in the AlphaBlendColorMode register (and elsewhere), and is easily
implemented by just swapping the R and B components after conversion into the internal
format. The only exception to this are the 3:3:2 formats where the actual bit fields
extracted from the framebuffer data need to be modified as well because the R and B
components are differing widths. CI processing is not affected by this swap and the result
is always on the internal R channel.

When converting a Color Index value to the internal format any unused bits are set to zero

Internal Color Channels

Format

Color
Order

Name

G

B

lisiele)

3D/.bs

BGR

8:8:8:8

8@0

3@8

8@16

8@24

BGR

4:4:4:4

4@0

4@4

4@8

4@12

BGR

5:5:5:1

5@0

5@5

5@10

BGR

5:6:5

5@0

6@5

5@11

1@15

BGR

3:3:2

3@0

3@3

2@6

O PN~ O

RGB

8:8:8:8

8@16

3@s8

8@0

8@24

Proprietary and Confidential

16-1

Color Format

GLINT R4 Programmer’s Guide Volume Il

RGB 44:44 4@8 A@4 4@0 A@12

RGB 5551 5@10 5@5 5@0 1@15
RGB 5:6:5 5@11 6@5 5@0 -

AN -

RGB 3:3:2 3@5 3@2 2@0 -

CI

15 X CI8 8@0 0 0 0

Name

The AlphaConversion bit in the AlphaBlendAlphaMode register selects the conversion
method for alpha values read from the framebuffer. When the conversion bit is set the
corresponding component(s) is left shifted by (8 - n) bits and zero filling.

Note For some formats the components have different widths, hence different
values of n.

« The Scale method linearly scales the alpha values to fill the full range of an 8 bit
value. This method is preferable when, for example, downloading an image with
fewer bits per pixel into a deeper (i.e. more bits per pixel) framebuffer.

« The Shift method left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it
preserves the framebuffer alpha when fragment alpha does not contribute to it. For
example if a three bit component has bits B2, B1 and BO then the 8 bit value would be
made up as follows:

Bit 7 Bit O of output byte

v v

B2 Bl BO B2 By Bp B2 Bj

If the alpha component doesn'’t exist in the format, or NoAlphaBuffer is set then the alpha
value is not affected by the setting of the AlphaConversion bit and is always set to 255 (in
the 8 bit domain) or 256 (in the 9 bit domain).

The AlphaBlendColorMode register controls color channel blending. It has the following
format:

Type Offset Format

AlphaBlendColorMode Alpha Blend 0x AFAO Bitfield
AlphaBlendColotModeAnd Alpha Blend 0x ACBO Bitfield Logic Mask
AlphaBlendColorModeOr Alpha Blend 0x ACB8 Bitfield Logic Mask

Control registers

Bits

Name Read3 |Write |Reset |Description

0

Enable N [X When set causes the fragment's color to be alpha
blended under control of the remaining bits in this
register. When clear the fragment color remains
unchanged (but may later to effected by the chroma
test).

3 Logic Op register readback is via the main register

16-2

Proprietary and Confidential 3Dlabs

GLINT R4 Programmer’s Guide Volume llI Color Format

1...4 SourceBlend 0 m X This field defines the source blend function to use. See
the table in the AphaBlendColorMode register for the
possible options

5...7 DestBlend N [X This field defines the destination blend function to use.
See the table in the A/phaBlendColorMode register for the
possible options

8 Source 0 m X This bit, when set causes the source blend result to be
TimesTwo multiplied by two before it is combined with the dest
blend result. When this bit is clear no multiply occurs
9 DestTimes Two |[] il X This bit, when set causes the dest blend result to be

multiplied by two before it is combined with the source
blend result. When this bit is clear no multiply occurs

10 InvertSource 0 0 X This bit, when set, causes the incomming source data to
be inverted before any blend operation takes place

11 InvertDest 0 0 X This bit, when set, causes the incomming dest data to
be inverted before any blend operation takes place

12...15 Color Format 0 0 X This field defines framebuffer color formats. See the

table in the A/phaBlendColorMode register for the
possible options

16 ColorOrder] N X This bit selects the color order in the framebuffer:
0 =BGR
1 =RGB
17 Color 0 nl X This bit selects how color components less than 8 bits
Conversion wide are converted to 8 bit wide values prior to the
alpha blend calculations. The options are
0 = Scale
1 = Shift
18 Constant Source |[] 0 X This bit, when set, forces the Soutce color to come

trom the AphaSourceColor register (in 8888 format)
instead of the framebuffer.

0 = Use framebuffer

1 = Use AlphaSourceColor register

19 ConstantDest 0 0 X This bit, when set, forces the destination color to come
from the A/phaDestColor register (in 8888 format)
instead of the fragment's color.

0 = Use fragment's color.

1 = Use AphaDestColor register.

20...23 Operation 0 m X This field selects how the source and destination blend
results are to be combined. The options are:
0 Add
1 Subtract (ie. S - D)
2 Subtract reversed (i.e. D - S)
3 Minimum
4 Maximum
24 SwapSD 0 0 X This bit, when set causes the source and destination

pixel values to be swapped. The main use for this is to
allow a downloaded color value to be in a format other
than 8888 and use this unit to do color conversion.

The ColorConversion bit selects the conversion method for RGB values read from the
framebuffer, similarly to the AlphaConversion bit for alpha values:

3D/.b5 Proprietary and Confidential 16-3

Color Format GLINT R4 Programmer’s Guide Volume Il

« The Scale method linearly scales the color values to fill the full range of an 8 bit value.
This method is preferable when, for example, downloading an image with fewer bits
per pixel into a deeper (i.e. more bits per pixel) framebuffer.

« The Shift method left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it
preserves the framebuffer color when fragment color does not contribute to it4

16.1.1 Color Dithering

GLINT R4 uses an ordered dither algorithm to implement color dithering. The following
table shows the exact type of dithering used when dither is enabled. The type of dithering
depends on the width of individual color components:

Component Width Type of Dithering
8 No Dithering
5 2x2 Ordered Dither
4 4x4 Otrdered Dither
3 4x4 Ordered Dither
2
1

4x4 Ordered Dither
4x4 Ordered Dither

Table 16.7 Dither Methods
GLINT R4’s ordered dither matrices are shown below:

0 8 2 10
12 4 14 6 0 2
3 11 1 9 3 1
15 7 13 5

Table 16.8 Ordered Dither Matrices, 4x4 and 2x2.

If the color formatting unit is disabled, the RGBA color components are not modified.
Instead, they are truncated or rounded under the control of the RoundingMode bit in the
DitherMode register when they are placed in the framebuffer. This assumes that the
framebuffer width is less than 8 bits per component. In ClI mode the value is rounded to
the nearest integer. In both cases the result is clamped to a maximum value to prevent
overflow.

In some situations only screen coordinates are available, but windows-relative dithering is
required. This can be implemented by adding an optional offset to the coordinates before
indexing the dither tables. The offset is a two bit number which is supplied for each
coordinate, X and Y. The XOffset, YOffset fields in the DitherMode register control this
operation, if window relative coordinates are used they should be set to zero. For more
information on offset calculation see section 4.2.10.1 - Address Calculation, in Volume |

4The scale method would otherwise cause the 'fraction’ bits to be non zero, which could result in a different color when re-
dithered again. This shows up as a faint outline of the undetlying polygon, when, for example, an alpha blended texture is used
with zero value to provide cut-outs.

16-4 Proprietary and Confidential 3Dlabs

GLINT R4 Programmer’s Guide Volume llI Color Format

16.1.2

Alpha channel dithering is qualified by the AlphaDither control bit. When cleared the alpha
channel is processed in the same way as the color channels, as dictated by the
DitherEnable bit. When the AlphaDither bit is set however, the alpha channel is not
dithered, but is processed according to the state of the RoundingMode bit. The ability to
disable dithering on the alpha channel is useful when using the alpha buffer to hold
coverage information during antialiasing. In this situation dithering adds noise to the
coverage value, which would create artifacts where a pixel which should be fully covered is
reported as not fully covered.

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details on dithering.

Registers
Dither operations are controlled by the DitherMode register:

DitherMode
DitherModeAnd
DitherModeOr

Name Type Offset Format

DitherMode Global 0x8818 Bitfield

DitherModeAnd Global 0xACDO Bitfield Logic Mask

DitherModeOr Global 0xACD8 Bitfield Logic Mask

Control Register

Bits Name Read | Write | Reset | Description

0 Enable 0 B X When set causes the fragment's color values to be
dithered or rounded under control of the remaining
bits in this register. If this bit is clear then the
fragment's color is passed unchanged.

1 Dither Enable | [] B X When this bit is set any RGB format color is dithered,
otherwise it is rounded to the destination size under
control of the RoundingMode field. See the table
below for the dither matrix and how it is combined
with the color components. Color Index formats are
always rounded.

2...5 Color Format 0 B X The color format which in turn is coded from the size
and position of the red, green, blue and (if present) the
alpha components.

6...7 Xoffset N B X This offset is added to the fragment's x coordinate to
derive the x address in the dither table. This allows
window-relative dithering using screen coordinates.

8...9 Yoffset 0 B X This offset is added to the fragment's y coordinate to
derive the y address in the dither table. This allows
window-relative dithering using screen coordinates.

10 Color Order 0 B be Holds the color order. The options are:

0 = BGR
1 =RGB
3D/.b5 Proprietary and Confidential 16-5

Color Format GLINT R4 Programmer’s Guide Volume Il

11...13 Reserved 0 0 X
14 Alpha Dither 0 il X This bit allows the alpha channel to be rounded even
when the color channels are dithered. This helps
when antialiasing.
0 = Alpha value is dithered (if
DitherEnable is set)
1 = Alpha value is always rounded.
15...16 Rounding 0 il X 0 = Truncate
Mode 1 = Round Up
2 = Round Down
17...31 Unused 0 0 X

Figure 16-1 DitherMode Register

16.1.3

16.1.4

16.1.5

16-6

Dither Example
To set the framebuffer format to RGB 3:3:2 and enable dithering:

/1 332 Dithering

ditherMode.UnitEnable = GLINT R4_TRUE
ditherMode.DitherEnable = GLINT R4 _TRUE
ditherMode.ColorMode = GLINT R4_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

3:3:2 Color Format Example
To set the framebuffer format to RGB 3:3:2 and disable dithering:

/1 332 No Dither

ditherMode.UnitEnable = GLINT R4_TRUE
ditherMode.DitherEnable = GLINT R4 _FALSE
ditherMode.ColorMode = GLINT R4_COLOR_FORMAT_RGB_332
DitherMode(ditherMode) // Load register

8:8:8:8 Color Format Example
To set the framebuffer to RGBA 8:8:8:8 and not dithered:

// 8888 Dithered (No effect as 8 bit components are
I/ not dithered)

ditherMode.UnitEnable = GLINT R4_TRUE
ditherMode.DitherEnable = GLINT R4 _FALSE
ditherMode.ColorMode = GLINT R4 _ COLOR_FORMAT_RGBA 83888

Proprietary and Confidential 3Dlabs

GLINT R4 Programmer’s Guide Volume llI Color Format

16.1.6

16.2

16.2.1

3D/.bs

DitherMode(ditherMode) // Load register

The same can be achieved by disabling the color formatting unit as 8 bit components are
not dithered:

/1 8888 No dither
ditherMode.UnitEnable = GLINT R4 _FALSE

DitherMode(ditherMode) // Load register

Color Index Format Example
To set the framebuffer to 4 bit Color Index and enable dithering:

/I 4 bit Cl with dithering

ditherMode.UnitEnable= GLINT R4 TRUE
ditherMode.DitherEnable = GLINT R4 TRUE
ditherMode.ColorMode = GLINT R4_COLOR_FORMAT_CI_4
DitherMode(ditherMode) // Load register

Logical Op Unit
The logical op unit performs two functions; logic ops between the fragment color (source

color) and a value from the framebuffer (destination color), and, optionally control of a
special GLINT R4 mode which allows high performance flat shaded rendering.

High Speed Flat Shaded Rendering

This mode is still supported on the GLINT R4 and is detailed below for completeness but
offers no advantage over span processing. The technique uses a color value from the
FBWriteData register instead of fragment color. It is retained for backwards compatibility
only. To use the mode the following constraints must be satisfied:

« Flat shaded aliased primitive

« No dithering required or logical ops

« No stencil, depth or GID testing required

+ No alpha blending

If all the conditions are met then load the FBWriteData register with the required
framebuffer color data and set the UseConstantFBWriteData bit in the LogicalOpMode
register. All unused units should be disabled.

This mode is most useful for 2D applications or for clearing the framebuffer when the
memory does not support block writes. Note that the FBWriteData register should be
considered volatile when context switching.

Proprietary and Confidential 16-7

Color Format

16.2.2 Logical Operations

The logical operations supported by GLINT R4 are:

GLINT R4 Programmer’s Guide Volume Il

Mode Name Operation Mode Name Operation
0 Clear 0 8 Nor ~S | D)
1 And S&D 9 Equivalent ~S "~ D)
2 And Reverse S& ~D 10 Invert ~D
3 Copy S 11 Or Reverse S| ~D
4 And Inverted ~S& D 12 Copy Invert ~S
5 Noop D 13 Or Invert ~S | D
6 Xor S*D 14 Nand ~(S & D)
7 Or S|D 15 Set 1
Where: S = Source (fragment) color, D = Destination (framebuffer) color
Table 16.9 Logical Operations
For correct operation of this unit in a mode which takes the destination color, GLINT R4
must be configured to allow reads from the framebuffer using the FBDestReadMode
register. See section 814 for more details.
GLINT R4 makes no distinction between RGBA and Cl modes when performing logical
operations.
16.2.3 Registers

The operation of the unit is controlled by the LogicalOpMode register:

LogicalOpMode
LogicalOpModeAnd

LogicalOpModeOr

Name Type Offset Format
LogicalOpMode Logic Ops 0x8828 Bitfield
LogicalOpModeAnd Logic Ops 0xAECO Bitfield Logic Mask
LogicalOpModeOr Logic Ops 0xAECS8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0 Enable 0 i < When set causes the fragment's color to be logial op'ed
under control of the remaining bits in this register.
When clear the fragment color remains unchanged
(but may later to effected by write masking).
16-8 Proprietary and Confidential 3Dlabs

GLINT R4 Programmer’s Guide Volume llI

Color Format

1..4 LogicOp 0 N x This field defines the logical op function to use. The
options are:
0 = Clear (0) 1=AndS & D)
2 = AndReverse (§ & ~D) 3 = Copy (S)
4 = AndInvert (~S & D) 5 = Noop (D)
6 =Xor (S™ D) 7=0: (S | D)
8 = Nor (~(S | D); 9 = Equiv (~(S ~ D);
10 = Invert (~D)
11 = OzReverse (S | ~D)
12 = Copylavert (~S)
13 = Orlavert (~S | D) 14 = Nand (~(S & D);
15 = Set (1)
where: S is Color or FBSourceData
D is FBData
5 UseConstantEFB |] B x There is no longer any performance advantage to
WriteData using this bit but it is retained for backwards
compatability.
6 BackgroundEn | N - This bit, when set, enables a different logical operation
able to be done for background pixels. If this bit is clear
then the same logical operation is applied to
foreground and background pixels. Setting this bit
when the Enable field is zero has no effect.
A background pixel is a pixel whose corresponding bit
in the color mask is zero.
7...10 BackgroundLog |] B x This field specifies the logical operation to apply to
icalOp background pixels, if this has been enabled by the
BackgroundEnable field. The options and field values
are the same as the LogicalOp field.
11 UseConstantSo | [] B x This field, when set, causes the source data to be taken
urce from the ForegroundColor register, otherwise it is
taken from the fragment, if needed. The color format
is in the raw framebuffer format and 8 or 16 bit pixels
should have their color replicated to fill the full 32
bits.
12...31 Unused 0 0 x
16.2.4 XOR Example
To set the logical operation to XOR.
/I Set framebuffer to allow reads
/I Not shown
logica OpMode.UnitEnable = GLINT R4_ENABLE
logical OpMode.LogicalOp = GLINT R4_LOGICOP_XOR
L ogical OpM ode(l ogical OpM ode) /I Load register
3D/ubs Proprietary and Confidential 16-9

Color Format GLINT R4 Programmer’s Guide Volume Il

16.2.5 Logical Op and Software Writemask Example

16-10

To set the logical operation to COPY, enable the software writemask, and write to the
green component in an 8 bit framebuffer configured in 3:3:2 RGB mode:

/1 Set framebuffer to allow reads
/ Not shown

ditherMode.UnitEnable = GLINT R4_ENABLE

ditherM ode.DitherEnable = GLINT R4_ENABLE
ditherMode.ColorMode = GLINT R4_COLOR_FORMAT_RGB_332
DitherMode(ditherM ode) /I Load register

logicalOpMode.UnitEnable = GLINT R4_ENABLE
logicalOpMode.LogicalOp = GLINT R4_LOGICOP_COPY

L ogical OpM ode(logical OpM ode) Il Load register

FB SoftwareWriteM ask(OxFFFFFFE3)

Proprietary and Confidential 3Dlabs

GLINT R4 Programmer’s Guide Volume llI Framebuffer Writemasks

17

Framebuffer Writemasks

17.11

17.1.2

17.1.3

17.1.4

3D/.bs

Two types of framebuffer writemasking are supported by GLINT R4; Software and
Hardware. Software writemasking requires a read from the framebuffer to combine the
fragment color with the framebuffer color before checking the bits in the mask to see which
planes are writeable. Hardware writemasking is implemented using SDRAM/SGRAM
writemasks and no framebuffer read is required. Refer to section 12.3, Windows
Initialisation, for further information on Writemasks and Write initialisation.

Software Writemasks

Software writemasking is controlled by the FBSoftwareWriteMask register. The data field
has one bit per framebuffer bit which when set, allows the corresponding framebuffer bit to
be updated. When reset it disables writing to that bit. Software writemasking is applied to
all fragments and is not controlled by an enable/disable bit. However it may effectively be
disabled by setting the mask to all 1's. Note that the ReadDestination bit must be enabled
in the FBDestReadMode register when using software writemasks, in which some of the
bits are zero.

See the Framebuffer Read/Write section for details of how to enable/disable framebuffer
reads.

Hardware Writemasks

Hardware writemasks, if present, are controlled using the FBHardwareWriteMask register.
If the framebuffer supports hardware writemasks, and they are to be used, then software
writemasking should be disabled (by setting all the bits in the FBSoftwareWriteMask
register). This results in fewer framebuffer reads when no logical operations or alpha
blending is needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware writemask must be
replicated to all 4 bytes of the FBHardwareWriteMask register. If the framebuffer is in 16
bit packed mode then the 16 bit hardware writemask must be replicated to both halves of
the FBHardwareWriteMask register.

See the GLINT R4 Reference Guide for more details of framebuffer hardware writemasks.

Registers

Both FBHardwareWriteMask and FBSoftwareWriteMask are 32 bit registers in which
each bit represents a bit in the framebuffer.

Software Writemask Example
Using software writemasks:

/I Enable framebuffer reads (not shown)
I Set the writemask

Proprietary and Confidential 17-1

Framebuffer Writemasks GLINT R4 Programmer’s Guide Volume Il

FB SoftwareWriteM ask(0xOFOFOFOF)
See 816.2.5 for another example

17.1.5 Hardware Writemask Example

Using hardware writemasks when neither logic ops, nor alpha blending are enabled:

// Disable framebuffer reads (not shown)

I Set the writemasks

FB SoftwareWriteM ask(OXFFFFFFFF) // 'Disable
FBHardwareWriteM ask(0xFOFOFOFQ) // Actual writemask

17-2 Proprietary and Confidential 3Dlabs

GLINT R4 Programmer’s Guide Volume llI

Host Out

18

Host Out

The Host Out Unit controls which data is available at the output FIFO, and gathers
statistics about the rendering operations (picking and extent testing) and the
synchronization of GLINT R4 via the Sync register.

18.1 Filtering

Filtering controls the data available at the output FIFO. There are a number of categories:

« depth, stencil and color: these are data values associated with a fragment which has
been read from the localbuffer or framebuffer, or generated using the UpLoadData
flag in the Framebuffer Write Unit.

- Asingle register, Sync, which is used to synchronize GLINT R4 and flush the
graphics pipeline.

- Statistics: The registers associated with extent and picking.

The filtering is controlled by the FilterMode register which is split into 2 bit fields for each
category. The 2 bit field selects whether the register tag and/or register data, are passed to
the output FIFO. The format of the FilterMode register is shown in the table below.

Register Category Tag Data Description
Control |Control
Bit Bit
Diagnostic Use Only 0 1
Diagnostic Use Only 2 3
Depth 4 5 This is the data from image upload of the Depth (Z) buffer.
Stencil 6 7 This is the data from image upload of the Stencil buffer.
Color 8 9 This is the data from image upload of the Framebuffer
(FBColor).
Synchronization 10 11
Statistics 13 This is the data generated following a command to read
back the results of the statistic measurements: PickResult,
MaxHitRegion, MinHitRegion.
Diagnostic Use Only 14 15

Table 18.10 Filter Modes

18.1.1 Filter Mode Example
/I Set up Filter mode to only permit read back of

3D/.bs

Proprietary and Confidential 18-1

Host Out

18.1.2

18.1.2.1

18.1.2.2

18-2

GLINT R4 Programmer’s Guide Volume Il

/I synchronization tag and data
FilterM ode(0x0C00) /Il Set bits 10 & 11

Statistic Operations

There are two statistic collection modes of operation; picking and extent checking. Picking
is normally used to select drawn objects or regions of the screen. Typically, extent
checking is used to determine the bounds within which drawing has occurred so that a
smaller area of the framebuffer can subsequently be cleared. Spans are handled by
GLINT R4 in a fully consistent way for picking and extent checking.

Statistic collection is controlled using the StatisticMode register.

Picking

In picking mode, the active and/or passive fragments and spans have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegion registers. If the result is true, then the PickResult flag is set, otherwise it holds
its previous state. The compare function can be either Inside or Outside. Before picking
picking can start, the ResetPickResult register must be loaded to clear the PickResult
flag.

The MinRegion and MaxRegion registers are loaded to select the region of interest for
picking picking. A coordinate is inside the region if:

Xmin < X < Xmax

YminsY <Ymax

where X and Y are from the fragment and the min/max values are from MinRegion and
MaxRegion registers. This comparison is identical to the one used in the scissor tests.
The following stages are required for picking picking:

1) load ResetPickResult, MinRegion and MaxRegion registers

2) Set up the FilterMode to allow statistic commands out of GLINT R4 MX

3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO while waiting for the PickResult to have passed through the
pipeline.

Extent Checking

In extent mode, active and/or passive fragments have their associated XY coordinates
compared to the MinRegion and MaxRegion registers and if found to be outside the
defined rectangular region, then the appropriate register is updated with the new
coordinate(s) to extend the region. The Inside/Outside bit has no effect in this mode. Block
fills are included in the extent checking if the StatisticMode register is set to include spans.

The MinRegion and MaxRegion registers are loaded to select the maximum value
(MinRegion) and minimum value (MaxRegion) for extent checking. A coordinate is inside
the region if:

XminSX <Xmax

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Host Out

18.1.3

18.1.4

YminsY <Ymax

where X and Y are from the fragment and the min/max values are from MinRegion and
MaxRegion registers. This comparison is identical to the one used in the scissor tests.

Once all the necessary primitives have been rendered the results can be found using the
MinHitRegion and MaxHitRegion commands, which cause the contents of the
MinRegion and MaxRegion registers respectively to be written into the output FIFO
(under control of the FilterMode register).

Synchronization

The Sync register is filtered and written to the output FIFO in a similar fashion to the other
registers. If an interrupt is required then the most significant bit of the Sync command
register must be set, and the filtering must be set up to write something into the FIFO. If
nothing is written to the FIFO (because of the FilterMode) then no interrupt is generated.

The actual interrupt is not generated until the Sync data or tag has passed through. Itis
on the output of the FIFO, which allows low level resynchronization between the core and
PCI clock domains. The FIFO has an extra bit in width to accommodate the interrupt
signal. When both the data and tag are written into the FIFO only the first entry in the FIFO
will cause the interrupt (assuming an interrupt was requested).

The remaining bits in the data field are free and can be used by the host to identify the
reason for the Sync.

Registers
Filtering is controlled by the FilterMode register:

FilterMode
FilterModeAnd
FilterModeOr

Name Type Offset Format

FilterMode Output 0x8C00 Bitfield

FilterModeAnd Output 0xADO00 Bitfield Logic Mask

FilterModeOr Output 0xADO08 Bitfield Logic Mask

Control registers

Bits Name Read® | Write | Reset | Description

0...3 Reserved 0 N - Reserved for diagnostic use — set to 0

4 LBDepthTag 0 N - When set allows the L.BDepth tag to be written into the
output FIFO.

5 LBDepthData | N <x When set allows the data upload from the Depth
buffer to be written into the output FIFO.

6 StencilTag 0 N X When set allows the LBStencil tag to be written into
the output FIFO.

5 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential 18-3

Host Out GLINT R4 Programmer’s Guide Volume Il

7 StencilData 0 i When set allows the data upload from the Stencil
buffer to be written into the output FIFO.

8 FBColorTag 0 i When set allows the FBCo/or tag to be written into the
output FIFO.

9 FBColorData 0 i When set allows the data upload from the framebuffer
to be written into the output FIFO.

10 SyncTag 0 i When set allows Sync tag to be written into the output
FIFO.

11 SyncData 0 i When set allows the Sync data to be written into the
output FIFO.

12 StatisticsTag 0 B When set allows the PickResult, MaxHitRegion and
MinHitRegion tags to be written into the output FIFO.

13 StatisticsData 0 i When set allows the PickResult, MaxHitRegion and
MinHitRegion data to be written into the output FIFO.

14 RemainderTag | i When set allows any tags not covered by the categories
in this table to be written into the output FIFO.

15 RemainderData | i When set allows any data not covered by the
categories in this table to be written into the output
FIFO.

16...17 ByteSwap 0 i This field controls the byte swapping of the data field
when it is written into the output FIFO. The options
are:

0 = ABCD (i.e. no swap)
1 =BADC
2 = CDAB
3 = DCBA

18 ContextTag 0 i When set allows the ContextData and EndOfFeedback
tags to be written into the output FIFO.

19 ContextData 0 i When set allows the ContextData and EndOfFeedback
data to be written into the output FIFO.

20 RunlLength 0 i This bit, when set, will write run length encoded data

Encode Data into the host out FIFO.

21...31 Unused 0 0

Notes: This register can only be updated if the Security register is set to 0.

Figure 18-1 FilterMode Register

StatisticMode
StatisticModeAnd
StatisticModeOr

Name
StatisticMode

StatisticModeAnd
StatisticModeOr

18-4

Type
Output
Output
Output
Command

Statistic collection is controlled by the StatisticMode register:

Offset Format
0x8C08 Bitfield
0xAD10 Bitfield Logic Mask
0xAD18 Bitfield Logic Mask

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume llI Host Out

Bits Name Read | Write | Reset | Description
0 Enable 0 N < When set allows the collection of statistics
information.
1 StatsType 0 B x Selects the type of staticstics to gather. The options
are:
0 = Picking
1 = Extent
2 ActiveSteps 0 N - When set includes active fragments in the statistics
gathering, otherwise they are excluded.
3 PassiveSteps 0 N - When set includes culled fragments in the statistics
gathering, otherwise they are excluded.
4 Compare 0 B < Selects the type of compare function to use. The
Function options are:
0 = Inside region
1 = Outside region
5 Spans 0 N % When set includes spans in the statistics gathering,
otherwise they are excluded.
6..31 Unused 0 0 x

Figure 18-2 StatisticMode Register

18.1.5

3D/.bs

MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The format is 16
bit 2's complement numbers, X in the least significant end of the word.

PickResult is used to read the results of picking, the pick flag is placed in the least
significant bit of the 32 bit register. ResetPickResult is used to clear the picking flag, the
data field is not used.

The Sync register is 32 bits with the most significant bit set to indicate an interrupt is to be
generated, bits 0-30 are available for the user.

Picking Example
Set the statistic mode to picking and detect any active fragments in the region 0x0 <= x <
0x100, 0x0 <=y < 0x100. Render some primitives then read back the results.

/I Set filter mode as above
FilterM ode(0x0CQ0) /I Set bits10 & 11

Il Set statistic mode
MinRegion(0)
MaxRegion(0x100 | 0x100 << 16)

/I Clear the picking flag
ResetPickResult(0x0) // Datanot used

Proprietary and Confidential 18-5

Host Out GLINT R4 Programmer’s Guide Volume Il

/I Now render primitives.... ...
Render (render) // All units set as appropriate

/I All rendering finished.

Il Set the filter mode to allow read back of Syncs
Il and statistic information (tag and data)

FilterM ode(0x3C00) // Set bits 10 to 13

/I Write to the PickResult register
PickResult(0x0) // Data not used

/I Now read the PickResult from the output FIFO (not shown)

18.1.6 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data (0x34) in the
lower 31 bits of the Sync register.

Il Set up Filter mode to only permit read back of
Il synchronization tag and data
FilterM ode(0x0CO00) /Il Set bits 10 & 11

I/ Write to the Sync register with the top bit
I/ (bit 31) set and user data encoded into the
Il lower bits (0-30)

sync = (Ox1 << 31) | (0x34 & Ox7FFFFFFF)
Sync (sync)

/ Now wait for the sync interrupt. (Not shown.)

18-6 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Initialization

19

Initialization

19.1

19.11

3D/.bs

Initializing GLINT R4

This section illustrates how to initialize GLINT R4 following reset, prior to carrying out
rendering operations.

Initialization falls broadly into three areas, though in different systems precise

responsibilities can vary:

. System initialization covers the PCI bus, memory set-up and video output. This
information typically is only initialized once following reset.

« Window initialization covers the base address of the current rendering window and its
color format. This must be initialized at reset and needs to be updated each time
GLINT R4 starts drawing to a new window.

« Application initialization covers state that is typically dynamic, enabling and disabling
depth testing for example. Again this state must be set at reset, but is likely to be
updated relatively frequently.

To make use of the full functionality of GLINT R4 consult the relevant sections of Chapter
1 - Graphics Programming. Examples are given which make use of the pseudocode
conventions given in Appendix B.

Note: In general the graphics registers are not hardware initialized to specific
values at reset. In the examples below it is assumed that the data structures
used to load these registers are initialized to zero. Thus bit fields which are
not set explicitly default to zero.

Reset and initialisation

The units and FIFOs can be reset under software control or by a hardware reset signal,
usually as a result of power-on.

During reset all the inter-unit FIFOs, the FIFOs between the core and the memory
controller, and the host interface are emptied. Some of the units (Local Buffer Read and
Framebuffer Read) also have internal FIFOs and these are cleared as well.

All the state machines in each unit are forced into their idle state so this together with the
FIFOs being empty guarantees a safe start when the first message is received.

Note: A reset does not, in general, change the contents of any state information
which can be readback. After a power-on reset al these registers must be
initialised by software to place them in a well defined state before any
rendering isdone. Units are not automatically disabled on a reset.

Proprietary and Confidential 19-1

Initialization GLINT R4 Programmer’s Guide Volume ||

19.2 System Initialization

19.2.1 PCI bus

There are a set of PCI related registers which can be interrogated for information about the
chip, for example its revision and device ID. Some of these PCI related registers need to
be set up at reset, for instance to configure the base addresses of the different memory
regions of the chip. However, the subject of PCI bus initialization is beyond the scope of
this document. For more details refer to the Reset chapter of the GLINT R4 Reference
Guide, and the PCI Local Bus Specification Rev2.1.

19.2.2 Memory Configuration

There are no memory hardware configuration pins. Memory parameters are set through a
group of registers in Region 0. These parameters are described in detail in the GLINT R4
Reference Guide, chapter 9 (Memory Systems) including register bitfields and sample
configurations. The primary registers are LocalMemCaps and LocalMemControl.
LocalMemCaps is show below.

19-2 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Initialization

LocalMemCaps

Name Type Offset Format
LocalMemCaps Memory Control ~ 0x1018 Bitfield
Command register
Bits Name Read | Write | Reset Description
0.3 Column N] 0 Address bits to use for column address.
Address
4.7 RowAddress 0 M 0 Address bits to use for row address.
8.11 BankAddress 0 n 0 Address bits to use for bank address.
12..15 ChipSelect 0 n 0 Address bits to use for chip select.
16..19 PageSize 0 n 0 Page size (units = full width of memory)
0 = 32 units 1 = 64 units, etc
20..23 RegionSize 0] OxF Region size (units = full width of memory)
0 = 32 units 1 = 64 units, etc
24 NoPrecharge 0 N 0 0 = off 1=on
Opt
25 SpecialMode 0 N 0 0 = off 1=on
Opt
26 TwoColor N] 0 0 = off 1=o0n
BlockFill
27 Combine Banks | []] 0 0 = off 1=on
28 NoWriteMask | []] 0x1 0 = off 1=on
29 NoBlockFill N] 0x1 0 = off 1=on
30 HalfWidth N] 0x1 0 = off 1=on
31 NoLookAhead | []] 0x1 0 = off =on
Notes: 1. The ColumnAddress, RowAddress, BankAddress, and ChipSelect fields select the bits of the
absolute physical address that are to be used to define corresponding parameters. Each value
follows on from the previous one, so the ChipSelect value starts at ColumnAddress +
RowAddress + BankAddress and continues for ChipSelect bits.

2. The PageSize field defines the size of the page, and the RegionSize field defines the size of the
region of memory that each of the four page detectors should be assigned to (so that it is set to
one quarter of the memory size).

19.2.3 Internal Video Timing Registers
Video Timing initialization is described in Volume I, chapter 5 (Video System).
19.2.4 Framebuffer Depth

The size of each pixel to be written into the framebuffer is set up using the PixelSize

register. The two bit pixel size encoding field sets the pixel size to be used for merging the

pixel data into the memory. It is normally set to the same value for all functions, but for
generating texture maps it may be advantageous to use a different write pixel size.
3D/.b5 Proprietary and Confidential 19-3

Initialization GLINT R4 Programmer’s Guide Volume ||

The pixel size is taken from bits 0...1 when bit 31 is O or taken from subsequent bites for
local functionality when bit 31 is 1. The two bit pixel size is encoded as follows:

« 0=32bpp
e« 1=16bpp
e« 2=8bpp

During readback bits 0...17 and 31 return values as loaded and bits 18...30 return zero.

19.2.5 Screen Width

The visible screen width depends on the framebuffer configuration, screen clipping
dimensions and RAMDAC setup. Framebuffer configuration is described in Volume |,
section 3.5.1 (Framebuffer Dimensions and Depth).

19.2.6 Screen Clipping Region

R4 supports a screen scissor clip which should be set at system initialization, and a user
scissor clip which should initially be disabled. Assuming that the relevant framebuffer

registers® are set appropriately (see the P4 Programmer’s Guide Volume I, chapter 4,
“Buffer and Cache Management”) then setting the screen clip prevents writing outside
framebuffer memory. The following example would be appropriate for a resolution of 1024
by 768 pixels:

screenSize. X = 1024

screenSizeY = 768

ScreenSize(ScreenSize)

scissorMode. ScreenScissorEnable = R4 ENABLE
scissorMode.UserScissorEnable= R4_DISABLE
ScissorM ode(ScissorM ode)

19.2.7 Localbuffer and Framebuffer Configuration

R4 supports a range of localbuffer configurations. During initialization, fields in the
LBWriteFormat, LBWriteBufferwWidth and LBReadFormat registers should be set to
appropriate values which reflect the depth of memory on the board design, and the initial
manner in which it is to be used.

N.B. The width of the Local and Frame buffers is needed toconvert x.y coordinates
into a physical address (= Y * FBWriteBufferWidth[buffer] + X). The frame
buffer height is not needed for this calculation.

For example if the hardware is designed to support a 32 bit localbuffer, and initially this is
to be divided into a 24 bit Depth buffer, 4 bit stencil and 4 GID planes then the registers
must be set as follows (where “[mode]” = either destination or source):

I b[mode] ReadFormat.DepthWidth =1 /I 24 bit depth buffer
Ib[mode] ReadFormat. Stencil Position =8 Il Stencil @ 24

0 Framebuffer and Localbuffer memory is defined using source and destination read and write base addresses, offsets and
widths for vatious formats and layouts. ScreenSize will then be a subset of the memory allocated to the buffers..

19-4 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Initialization

19.2.8

3D/.bs

Ib[mode] ReadFormat. Stencil Width =4 I 4 bit stencil
Ib[mode] ReadFormat.GIDWidth =4
Ib[mode] ReadFormat.GI DPosition =12 /IGID @ 29

L B[M ODE] ReadFormat(Ib[mode] ReadFormat)

IbWriteFormat. DepthWidth =1 /I 24 bit depth buffer
IbWriteFormat.Stencil Position =8 /I Stencil @ 24
IbWriteFormat. StencilWidth =4 I/ 4 bit stencil
IbWriteFormat.GIDWidth =4

|bWriteFormat.GI DPosition =12 /IGID @ 29

L BWriteM ode(I bWriteFormat)

Note that within the limits of the memory depth that is physically available, it is possible to
dynamically change the allocation of the bits, for instance on a per window basis.

Set the framebuffer and localbuffer source and/or destination read units to their default
data sources:

fbSourceReadMode.DataType = R4_FBSourceDATA
FB SourceReadM ode(fbSouceReadM ode)

IbSourceReadMode.DataType= R4 LBSourceDEFAULT
L BSourceReadM ode(IbSourceReadM ode)

Host Out Unit

Under some circumstances it is necessary for the host to synchronize with GLINT R4. This
is controlled using the Sync command which causes data to be written to the host out
FIFO once all processing has completed. The host out FIFO should normally be initialized
to pass these pieces of data (they can be filtered out).

The host out unit should normally be set to filter out all other output data, otherwise the
host software must regularly poll the output FIFO to keep it drained and prevent it freezing
the pipeline. For example:

filterMde. Depth = GLINT RA_NULL

filterMode. Stencil = GLINT RA_NULL

filterMode. Col or = GLINT RA_NULL

Fi | t er Mode

Synchroni zati on = G.INT RA_FILTER TAG _AND_DATA
// Al | ow syncs through

filterMode. Statistics = GLINT R4_NULL
FilterMde(filterMde)

Proprietary and Confidential 19-5

Initialization

19.2.9

19.3

19.3.1

19.3.2

19-6

GLINT R4 Programmer’s Guide Volume ||

Disabling Specialized Modes

The Graphic ID should normally be initially disabled using the GIDMode FragmentEnable
bit. Refer to chapter 1 - Graphics Programming - for more details.

Window Initialization

GLINT R4 supports the concept of a window origin and makes it relatively simple to
implement systems which allow different color formats to coexist in different windows.

Color Format

The Color formatting unit and the Alpha blend unit should be initialized to an appropriate
color format at reset. The units support a variety of different formats - see the GLINT R4
Reference Guide, AlphaBlendColor register ColorFormat bitfield and related tables.

For example to render in 3:3:2, 8 bit color format, the following would be needed:

ditherM ode.Col orFormat =GLINT R4 COLOR_FORMAT_RGB_332_FRONT
DitherM ode(ditherM ode)
alphaBlendColorM ode.Col orFormat =GLINT

R4 _COLOR_FORMAT_RGB_332 FRONT
AlphaBlendCol orM ode(al phaBlendCol orM ode)

To enable dithering use the following:

di t her Mobde. Xof f set

di t her Mode. Yof f set

di t her Mode. Di t her Enabl e
di t her Mode. Uni t Enabl e

Di t her Mode(di t her Mode)

0
0
GLI NT R4_ENABLE
GLI NT R4_ENABLE

Note: The color formatting unit is normally always enabled even if dithering itself is
not. Thisis because the unit handles color formatting as well as the dithering
operation.

Setting the Window Address and Origin

R4 supports the concept of a current window origin. The origin of the window can be
specified either as being in the Top Left or Bottom Left corner and (for Framebuffer
functions) one of four destination buffers. This allows the user to pick the most
appropriate coordinate system to use; for OpenGL it would typically be bottom left,
whereas for an X windows implementation it would be Top Left. Thus for OpenGL set:

fbDestReadMode.Origin[1]] = R4 BOTTOM_LEFT_WINDOW_ORIGIN
FBDestReadM ode(fbDestReadMode)
IbDestReadMode.Origin[1]] = R4 BOTTOM_LEFT_WINDOW_ORIGIN

L BDestReadM ode(IbDestReadMode)

The window dimensions for clipping are set in the scissor unit. The ScissorMinXY register
holds the minimum XY scissor coordinate - i.e. the rectangle corner closest to the screen
origin. This information usually is provided by the window system. It needs updating if the

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Initialization

window moves. As an example if the position of the window is (200, 600 to 480,960)
(using a bottom left coordinate system), the clipping coordinate is specified as follows:

ScissorMinXY = 200, 600
ScissorMaxXY = 480,960

To set the buffer origin using the BufferAddress and BufferOffset registers see P10
Programmer’s Guide Volume 1, “Buffer and Cache Management”. Unpatched addresses
can be held using only the BufferAddress register(s). Patched address offsets must be
held in the BufferOffset registers to convert the absolute memory address into a scree-
relative address which can be used for patching.

19.3.3 Writemasks

Normally both the hardware (if present) and the software writemasks are initially set to
make all bitplanes writeable:

FBSoftwareWriteMask(GLINT R4 ALL_WRITEMASKS SET)
FBHardwareWriteMask(GLINT R4 ALL_WRITEMASKS SET)
See Chapter 10, Framebuffer Writemasks, for more information.

19.3.4 Enabling Writing

Which buffers are enabled at any given time is window specific and should be considered
for performance reasons. Performance will be improved if unnecessary reads from, and
writes to, buffers are disabled. For example if the current rendering does not use depth,
stencil, or pixel ownership testing, then reading and writing to the localbuffer may be
disabled. The following example initializes the buffers to allow Z buffering and alpha

blending:
fbWriteM ode.WriteEnable = GLINT R4_ENABLE
FBWriteM ode(fbWriteM ode)
IbWriteM ode.WriteEnable = GLINT R4 ENABLE

LBWriteM ode(IbWriteM ode)

|bSourceReadM ode.Enable
IbDestReadM ode.Enable
L BReadM ode(lbReadM ode)

GLINT R4_DISABLE
GLINT R4_ENABLE

fbSourceReadM ode.ReadEnable
fbDestReadM ode.ReadEnable
FBDestReadM ode(fbDestReadM ode)

Note: to use software writemasking, the FBDestReadMode register’'s ReadEnable
field needs to be set if the writemask is set to other than all 1's.

GLINT R4_DISABLE
GLINT R4_ENABLE

3D/.b5 Proprietary and Confidential 19-7

Initialization

19.4

19-8

Application Initialization

GLINT R4 Programmer’s Guide Volume ||

While an application is running it may dynamically use features of GLINT R4 such as

depth buffering, alpha blending, logical operations, etc.

Initially, however, it is

recommended that the respective units be disabled to ensure they are in a known state:

areaStippleM ode.Enable = GLINT R4 DISABLE
AreaStippleM ode(areaStippleM ode)

lineStippleM ode. StippleEnable = GLINT R4 DISABLE
LineStippleM ode(lineStippleM ode);

routerM ode.Sequence = GLINT R4 _SET
RouterM ode(routerM ode) //Set to skip texture since stencil and depth disabled//
stencilMode.UnitEnable = GLINT R4 DISABLE
StencilM ode(stencilM ode)

depthMode.Enable = GLINT R4 _DISABLE
DepthM ode(depthM ode)

colorDDAMode.Enable = GLINT R4 DISABLE

ColorDDAM ode(colorDDAM ode)

textureCoordM ode.Enable = GLINT R4 _DISABLE

TextureCoordM ode(textureCoordM ode)

texturel ndexM ode.Enable = GLINT R4 _DISABLE

Texturel ndexM ode(texturel ndexM ode)

textureReadM ode.Enable = GLINT R4 _DISABLE

textureReadM ode(textureReadM ode)

TextureCompositeColorMode.Enable = GLINT R4 _DISABLE

TextureCompositeColorM ode(TextureApplicationM ode)

fogMode.Enable
FogM ode(fogM ode)

antialiasMode.Enable
AntialiasM ode(antiaiasM ode)

alphaTestMode.Enable
AlphaTestM ode(a phaTestM ode)

GLINT R4_DISABLE

GLINT R4_DISABLE

GLINT R4_DISABLE

aphaBlendAlphaM ode.Enable = GLINT R4 _DISABLE
AlphaBlendAlphaM ode(a phaBlendAlphaMode)
aphaBlendColorMode.Enable = GLINT R4 _DISABLE
AlphaBlendCol orM ode(alphaBlendColorM ode)
logicalOpMaode.Enable = GLINT R4 _DISABLE
L ogical OpM ode(logical OpM ode)

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume llI Performance Tips

20

Performance Tips

20.1

3D/.bs

The following is a list of software programming tips and techniques which can be applied
to maximize GLINT R4 performance. Many of these are debug aids and the importance of
effective debug techniques cannot be overemphasised:

As soon as we started programming, we found to our surprise that it wasn't as easy to get
programs right as we had thought. Debugging had to be discovered. | can remember the
exact instant when | realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.

- Maurice Wilkes discovers debugging, 1949

The list is intended to be suggestive only and refers back to the GLINT R4 Reference
Guide and earlier chapters of the Programmers Guide.

« Using Block Writes - e.g. for clears

« Fast double buffering in a window

« Disable FB reads-per-pixel if they are not required

« Incrementing addresses when writing to the FIFO to enable PCI burst transfers
« Using PCI Disconnect under PIO

« Using bus mastership (i.e. DMA)

« Improving DMA bus bandwidth utilization using the indexed FIFO modes

« Disabling units that are not in use (e.g. Framebuffer reads)

« Use of the extent register to minimize the area in the localbuffer and framebuffer that
needs to be cleared

« Use of the GLINT R4 graphics pipeline in preference to the framebuffer (and/or
localbuffer) bypass when possible

« Loading registers in unit order (i.e. Rasterizer first - Host Out last)
« Avoiding unnecessary register updates
« Miscellaneous debug and generic graphics tips

Block Writes

GLINT R4 boards are equipped with either SGRAM that supports block writes or SDRAM
which does not. This allows up to 32 pixels at a time to be filled with a constant color by a
single framebuffer write access. This can lead to roughly a 32fold increase in the speed of,
for instance, clearing a large area of the framebuffer.

While this technique is most useful when clearing the framebuffer, it can be used to fill any
trapezoid. See volume |, section 4.3.3 - Block Writes.

Proprietary and Confidential 20-1

Performance Tips GLINT R4 Programmer’s Guide Volume ||

20.2

20.3

20.4

20.5

20-2

Fast double buffering in a window

Double buffering is a technique used to achieve visually smooth animation, by rendering a
scene to an offscreen buffer, before quickly displaying it.

GLINT R4 board designs can readily support a variety of double buffering mechanisms
depending on the memaory configuration and LUT-DAC used, including:

. BLT
. Full Screen

Note: The best results can often be achieved by combining double buffering
techniques.

Disable FB Reads per pixel if not required

The AlphaFiltering bit in FBDestReadMode can reduce unnecessary FB reads. When
set, it compares the fragment’s alpha value and if it is equal to the AlphaReference value
(held in FBReadEnables) then no read is done. This saves memory bandwidth when the
destination color doesn't contribute to the fragment's color during blending.

Improving PCI bus bandwidth for Programmed 1/O and DMA

Writing data values into the memory mapped registers is appropriate for primitives which
require few set-up parameters such as 2D lines.

For more complex primitives such as Gouraud shaded triangles where a significant
number of registers must be loaded for each primitive, it may be more efficient to write
directly to the FIFO input.

The advantage of this mechanism is that it is then possible to use DMA burst transfers.

The disadvantage is that both the address of the register and the data value to be loaded
must be written, apparently doubling the amount of data to be loaded.

However, to improve DMA bus bandwidth utilization, the registers have been grouped into
blocks which frequently all need to be updated together, and an indexed addressing mode
is supported which allows a single "address" to be loaded, followed by the data for a whole
set of registers.

An additional mode is supported which allows a large number of data values to be loaded
to the same register. This is useful for image downloads.

It may also be possible to reduce DMA overhead by re-using DMA buffers and vertex
buffers. The HostInID register can be used to mark any point in the command stream so
that the use of index and vertex buffers can be monitored. This register is loaded with an
ID field; like the DMA address register, which can be read at any time to check the
progress of the command stream.

PCI burst transfers under Programmed 1/O

PCI bus burst transfers typically allow up to four times the bandwidth of individual
transfers.

However burst transfers are only initiated on the PCI bus when successive addresses are
being written to (i.e. the byte address is incremented by 4). To facilitate the use of burst
transfers when using programmed I/O to load the GLINT R4 FIFOs, GLINT R4 multiply
maps the FIFO input register throughout the range:

0x00002000 to 0xO0002FFF in region O

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Performance Tips

20.6

20.7

20.8

20.9

3D/.bs

Thus when data is being loaded into the FIFO a software loop should be written which
starts by writing the first data item at the lower extreme of this address range, and works
towards the upper.

Using PCI Disconnect Under Programmed 1/O

The PCI bus protocol incorporates a feature known as PCI Disconnect which is supported
by GLINT R4. Once GLINT R4 is in this mode, if the host processor attempts to write to the
full FIFO then instead of the write being lost, GLINT R4 asserts PCI Disconnect which
forces the host processor to retry the write cycle until it succeeds.

This feature allows faster download of data to GLINT R4 since the host need not poll the
INFIFOSpace register. However it should be used carefully because the bus is then
effectively hogged by the host processor until GLINT R4 frees up an entry in its FIFO.

Using Bus Mastership (DMA)
Most GLINT R4 boards support PCI bus mastership, allowing the on-board DMA of GLINT
R4 to be used to copy data from host memory into GLINT R4 FIFO.

Bus mastership mode is asserted in the CFGCommand register using bit 2,
BusMasterEnable.

The use of PCI bus mastership has a number of benefits:

« PCI bus bandwidth utilization is generally much improved. GLINT R4 has been
measured achieving transfer rates of up to 30-40MBytes/sec with a fast host slave
(P90 Neptune chipset).

« PCI bus bandwidth is further improved because the driver software no longer needs to
poll the FIFO flags to find how many entries are empty, before loading it.

« Overall system performance may benefit through increased parallelism between
GLINT R4 and the host, as the host can often perform useful work preparing the next
DMA buffer once it has initiated one DMA transfer.

Disabling units not in use

As a general rule any units within GLINT R4 which are not actively in use for the current
rendering should be disabled. Each unit has a bit in a control register for this purpose. This
will maximize pixel throughput in the graphics core.

In particular it is important to check that unnecessary reads of the localbuffer are not
taking place. For instance it is perfectly possible to set up the localbuffer read unit such
that GLINT R4 reads per pixel information (such as Z, stencil and GID data) which is then
discarded. The effect will be the same visually, but the cost in performance of making the
memory accesses will be very high.

Similar comments apply for the framebuffer read unit which again should only be enabled
to read pixel data when it is essential.

Note GLINT R4 boards typically support hardware writemasks and these should be
used in preference to the software writemasks.

Clearing the localbuffer & framebuffer

GLINT R4 can be instructed in the StatisticsMode StatsType register field to maintain a
record of the minimum bounding box (MinRegion and MaxRegion registers) that has

Proprietary and Confidential 20-3

Performance Tips GLINT R4 Programmer’s Guide Volume ||

20.10

20.11

20.12

20.13

20.14

20-4

been rendered to, in a given period. This can be used to limit the area that must be
cleared down using span fill.

For further details see chapter 11, Host Out, on Extent Checking

Use of the Framebuffer (or Localbuffer) Bypass

Whenever possible rendering should be done through the GLINT R4 graphics pipeline.
This is because reading and writing the framebuffer (or localbuffer) using the bypass is
relatively slow. In some cases performance may even be improved if a small area of the
framebuffer (and/or localbuffer) is uploaded through the graphics pipeline into a bitmap,
rendered to, and then downloaded again through the graphics pipeline.

Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive should be loaded into
the GLINT R4 FIFO in unit order. Thus the registers associated with the Rasterizer unit
should be loaded first, then Scissor unit, Stipple unit, Color DDA, and so on until the last
unit to be loaded is the Host Out unit (if necessary). Then finally the relevant command
register should be loaded.

For the order of the units refer to Volume Il, Graphics Programming.

Avoiding Unnecessary Register Updates

GLINT R4 control registers retain their value between one primitive and the next. Thus it is
not necessary to reload registers that are unchanged between primitives. e.g. the dY
register usually is set to either +1 or -1 (except when antialiasing).

In addition calculations of register values can often be shared across primitives, for
instance between edges in adjacent polygons in meshes.

Hardware and Software Context Dumps

GLINT R4 supports ContextDump and ContextRestore commands and a
StatisticsMode register, with enables for extent checking and picking set in the
FilterMode register. These allow the selection of active and passive fragments by screen
area and other parameters at specific points in the render process, and state switching to
halt and resume graphic processing while examining the collected data.

The decision to use hardware context management may depend on the software regime
being supported. Inthe D3D environment it may be more effective to save all the context
state in software copies. When a context is switched to, simply set up the chip again. This
avoids the need to wait for a Context Dump before switching away from a context and
takes advantage of D3D’s capabilities. However the hardware-assisted route is generally
preferred by OGL developers.

Use the Memory Scratchpad Registers

By keeping track of which primitives have finished rendering it is often possible to avoid
waiting for chip syncs. When applications do procedural tetxuring they need to change the
texture every frame. Normally host access to a texture that has been rendered with
requires a chip-sync. Using scratchpad memory to keep track of primitives which have
finished rendering allows the driver to confirm that the last primitive to use that texture has
indeed completed and the application can now access the texture immediately with no
sync. As long as applications only want to change the texture some time after they

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Performance Tips

rendered with it (the best time is just before rendering the new version) then chip-syncs
can be almost entirely avoided.

The same approach can be used when the application is changing render target and doing
a render-to-texture or blit-to-texture. Similarly, when the driver is texture swapping, it can
tell which textures it can and can’t touch using this tracking information.

20.15 Miscellaneous Tips

The following is a set of miscellaneous tips that are not GLINT R4 specific but well worth
using.

3D/.bs

Avoid polling for Vblank whenever possible but if you have to poll, consider whether
your application is taking just longer than an integer number of Vblank intervals to
draw a frame - slightly simplifying the frame to make it just under an integer multiple
can dramatically improve performance.

Another way of looking at the same problem is, if you remove your SwapBuffers()
calls, does your application render many more frames per second? If so, you might
be spending a lot of time waiting for buffer swaps, and you should tune your app so
that it draws just enough to fit in one less frame time.

When using DMA it may be best to flush the DMA buffer to the chip after entering a
large primitive in the buffer (e.g. screen clear), so that the chip is doing useful work
while further primitives are being prepared on the host.

Minimize the use of the Sync command.

Does making your window smaller cause things to speed up? If so, you're probably
fill-limited (bottlenecked by filling the pixels in the window). Speed things up by
reducing the depth complexity of your scene or by using simpler drawing operations
wherever possible (e.g., avoiding depth-buffering for the background or ground plane).
Does making your window smaller have no effect on the time it takes to draw a frame?
If so, you're probably geometry-limited (bottlenecked by transformations, clipping, or
lighting) or host-limited.

Measure the time it takes your application to draw a frame. Now comment out all the
drawing calls, and measure again. If most of the elapsed time per frame is spent
doing things other that drawing, your application is probably host-limited rather than
geometry-limited.

If you're geometry-limited, you can speed things up by using simpler models with
fewer vertices, by reducing the amount of clipped geometry, by using fewer light
sources, etc. If you're host-limited you should use profiling tools to figure out where
your application is spending its time and then tune those areas.

Proprietary and Confidential 20-5

GLINT R4 Programmer’s Guide Volume llI Appendices

21

Appendices

21.1 Pseudocode Definitions

In many areas of the document we use fragments of pseudocode to describe register
loading. These are based on a C interface to GLINT R4 in which each 32 bit register is
represented as a C structure, potentially split into a series of bit fields.

Where in an example only a subset of the bit fields in a register are set, it is assumed
either that a software copy of the register is being modified, or that the current contents of
the register have first been read back. This style has been chosen for clarity; there are
often more efficient strategies.

The constant definitions and register bit field definitions are based upon those used in the
3Dlabs driver software. Sources including header files are available under source license
agreement.

Loading of a GLINT R4 register is expressed as:
register-name(vaue)

When writing directly to the register file (i.e. to a FIFO) this would be implemented by
writing “value” to the mapped-in address of the register called “register-name”.

Fragmentary examples are not in strict C syntax, a typical example is:
/I Sample code to rasterize a 10x10 rectangle at the
/I framebuffer origin.

StartXDom(0) /I Start dominant edge
StartX Sub(1<<16) /I Start of subordinate
dXDom(0x0)

dX Sub(0x0)

Count(0xA)

Y Start(0)

dY (1<<16)

// Set-up to render an aiased trapezoid.
render.AreaStippleEnable = GLINT R4 _DISABLE
render.LineStippleEnable= GLINT R4_DISABLE
render.PrimitiveType = GLINT R4_TRAPEZOID
render.FastFillEnable= GLINT R4_DISABLE
render.FastFillIncrement = don’t care

3D/.b5 Proprietary and Confidential 21-1

Appendices

21-2

GLINT R4 Programmer’s Guide Volume ||

render.UsePointTable = GLINT R4_FALSE
render.AntialiasEnable = GLINT R4_DISABLE
render.AntialiasingQuality = don't care
render.ResetLineStipple= GLINT R4_FALSE
render.SyncOnBitMask = GLINT R4_FALSE
render.SyncOnHostData= GLINT R4_FALSE

Render(render) // Render the rectangle

Code is shown in roman face and comments are C++ style ’//" indicating that the rest of the
line is a comment. Any statement which ends in parenthesis is a register update, other
statements will generally be variable assignments.

A variable, say render, is of a type associated with the register being modified. This will
usually be clear by the context and will not usually be declared as such. All the type
definitions are in the header files. The values assigned to a register will be either a
variable as described above, a macro i.e. GLINT R4_TRUE , as found in the headers, or
an immediate constant in C style format (e.g. 0x45). In registers with several fields some
of which are not relevant to a particular example, the field can be ignored completely or set
to don't care. In some registers values for fields which need to be set are not readily
available. These are typically set as appropriate.

For some fragments we simply give a list of register updates e.qg.:
/I Sample code to rasterize arectangle

StartXDom() /[Start dominant edge
StartX Sub() /Il Start of subordinate
dXDom()

dX Sub()

Count()

Y Start()

dy()

/I Set-up to render an aliased trapezoid.

Render() // Render the rectangle

This technique is used to give a feel for the registers involved in a particular operation and
where a detailed treatment is not warranted.

To take the address of a register, the name is used, thus this example stores the address
of the StartXDom register in the buffer pointed to by the variable buf and increments the
pointer:

*puf++ = StartXDom

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

To test the value of a register the register name is dereferenced using the C *’ operator as
for instance in this example which tests for the completion of a DMA operation:

while(*DMACount !'=0) ;

21.2 Delta (Manual) Programming Example

The following examples demonstrates how to render a depth buffered, Gouraud shaded
triangle mesh using the R4 in standalone mode. The window into which the rendering
takes place is partially obscured and hence is clipped by two clip rectangles. The
geometry of the mesh and clip regions is shown in the following diagram:

The three examples cover drawing the mesh as a set of points at the vertices, as
connected line segments and finally as filled triangles. Note that the triangles can have
any orientation or shape and are not restricted to flat topped or bottomed ones used in the

example.

3D/.b5 Proprietary and Confidential 21-3

Appendices

21-4

GLINT R4 Programmer’s Guide Volume ||

I/ Thisisthe header file for the GLINT R4 example code.
/' 1t only contains the necessary items to support the examples.

#ifdef BIG_ENDIAN
I/l The DeltaM ode register fields.

typedef struct {
unsigned int pad: 15;
unsigned int TextureParameterMode: 2;
unsigned int ClampEnable: 1;
unsigned int NoDraw: 1;
unsigned int DiamondExit: 1;

unsigned int SubPixelCorrectionEnable: 1,
unsigned int DiffuseTextureEnable: 1;
unsigned int SpecularTextureEnable: 1;

unsigned int DepthEnable: 1;
unsigned int SmoothShadingEnabl e: 1;
unsigned int TextureEnable: 1;
unsigned int FogEnable: 1;
unsigned int DepthFormat: 2
unsigned int TargetChip: 2;

} _ DeltaModeFmat;

// The DrawTriangle and DrawLine command fields.

typedef struct {
unsigned int pad: 15;
unsigned int SubPixel CorrectionEnable: 1;
unsigned int CoverageEnable: 1,
unsigned int FogEnable: 1;
unsigned int TextureEnable: 1;
unsigned int SyncOnHostData: 1
unsigned int SyncOnBitMask: 1;
unsigned int UsePointTable: 1;
unsigned int AntialiasingQuality: 1;
unsigned int AntialiasEnable: 1;
unsigned int PrimitiveType: 2;
unsigned int reserved: 2;

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume llI

}

unsigned int FastFillEnable: 1;
unsigned int ResetLineStipple: 1,
unsigned int LineStippleEnable: 1;
unsigned int AreaStippleEnable: 1;
__DeltaRenderFmat;

#Helse

I/l The DeltaM ode register fields.

typedef struct {

}

// The DrawTriangle and DrawLine command fields.

unsigned int TargetChip: 2;
unsigned int DepthFormat: 2;
unsigned int FogEnabl e: 1;
unsigned int TextureEnable: 1;
unsigned int SmoothShadingEnable: 1,
unsigned int DepthEnabl e: 1;
unsigned int SpecularTextureEnable: 1;
unsigned int DiffuseTextureEnable: 1;
unsigned int SubPixelCorrectionEnable: 1;

unsigned int DiamondExit: 1;
unsigned int NoDraw: 1
unsigned int ClampEnable: 1;
unsigned int TextureParameterMode: 2
unsigned int pad: 16;
__DeltaM odeFmat;

typedef struct {

3D/.bs

unsigned int AreaStippleEnable: 1;
unsigned int LineStippleEnable: 1;

unsigned int ResetLineStipple: 1,
unsigned int FastFillEnable: 1;
unsigned int reserved: 2
unsigned int PrimitiveType: 2;
unsigned int AntialiasEnable: 1

unsigned int AntialiasingQuality: 1,

Proprietary and Confidential

Appendices

21-5

Appendices GLINT R4 Programmer’s Guide Volume ||

unsigned int UsePointTable: 1;
unsigned int SyncOnBitMask: 1;
unsigned int SyncOnHostData: 1;
unsigned int TextureEnable: 1;
unsigned int FogEnable: 1;
unsigned int CoverageEnable: 1,
unsigned int SubPixelCorrectionEnable: 1,
unsigned int pad: 15;

} __ DeltaRenderFmat;

#endif

Il The tag values for the registers.

#define Delta VOFoatTag 0x230
#define Delta V1FloatTag 0x240
#define Delta V2FloatTag 0x250
#define DeltaTagDeltaM ode 0x260
#define DeltaTagDrawTriangle 0x261
#define DeltaTagRepeatTriangle 0x262
#define DeltaTagDrawLine01 0x263
#define DeltaTagDrawlLinelO 0x264
#define DeltaTagRepeatLine 0x265
#define DeltaTagBroadcastMask Ox26f

/I Some temp defines to keep things compiling easily.
#define DrawTriangleTag _ DeltaTagDrawTriangle
#define DrawLineO1Tag _ DeltaTagDrawLine0l
#define DrawLinelOTag _ DeltaTagDrawLinelO
#define RepeatTriangleTag _ DeltaTagRepeatTriangle
#define RepeatLineTag _ DeltaTagRepeatLine

21-6 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

#include "delta.h"
#include <stdio.h>

extern unsigned long * dmaPtr;
extern DMA *dma;

/I Change these macros to what is needed to write the valuesto GLINT Delta,
/l or add them to a dma buffer.
#define LD _REG(reg, value) dmaPtr = dma->Space (2); *dmaPtr++ = reg; \
*dmaPtr++ = value;
#define LD_PARAM(reg, value) dmaPtr = dma->Space (2); * dmaPtr++ = reg;
\
*dmaPtr++ = *((unsigned long *) & value);

I/ Prototypes

void PointMesh (gal &cx);
void LineMesh (ga &cx);
void TriangleMesh (gal &cx);

I/l Simple structure to use in the example code

typedef struct { float x,y,z,r,0,b, a} Vertex;

typedef struct { short x,y; } XY;

typedef struct { XY scissorMin, scissorMax; } ClipRectangle;
I/ Define some test data.

#define verticesinMesh 7

Vertex mesh[verticesinMesh] = {
IIl'x yz r g b a

{ 10,300,0.1, 1.0, 1.0, 1.0, 1.0},
{ 60,100, 0.2, 1.0, 1.0, 0.0, 1.0},
{ 110, 300, 0.3, 1.0, 0.0, 1.0, 1.0},

{ 160, 100, 0.4, 1.0, 0.0, 0.0, 1.0},
{ 210, 300, 0.5, 0.0, 1.0, 1.0, 1.0},
{ 260, 100, 0.6, 0.0, 1.0, 0.0, 1.0},

3D/.b5 Proprietary and Confidential 21-7

Appendices GLINT R4 Programmer’s Guide Volume ||

{ 310, 300, 0.7,0.0, 0.0, 1.0, 1.0 }};
#define numberClipRectangles 2
ClipRectangle clipRectangles| numberClipRectangles] = {

{ {110, 0}, {400, 150} },
{ {0, 150}, {400, 350} }};

enum { paramS, paramT, paramQ, paramKs, paramKd, paramR, paramG,
paramB,
paramA, paramF, paramX, paramyY, paramZ} ;

21-8 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

// This function draws the vertices in the mesh as points. Thereisno direct
I/ support for pointsin R4 as they do not need any set up calculations.

I/l The R4 Delta unit can be used to plot points (maybe because you want to
Il dways work in floating point) by having GLINT Delta do the set up

Il calculations for

Il aline, but tell the rendering device to render points.

void PointMesh (gal &cx)

{
__DeltaModeFmat deltaMode;
__DeltaRenderFmat drawCmd;
int rect, v;

I/ Assume the rendering device is already initialized.
I/ Note we expect the BiasCoords mode in the RasterizerM ode register
/] to be set to add a bias of zero.

Il Set up the DeltaM ode register.

deltaM ode.pad =0;

deltaMode. TextureParameterMode =1; // Clamp.

deltaM ode.ClampEnable =1; // Clamp enabled.
deltaMode.NoDraw =0; // Do drawing.

deltaM ode.DiamondExit =0; // Not needed for this example.

deltaM ode.SubPixel CorrectionEnable = 0; // No sub pixel correction.
deltaMode.DiffuseTextureEnable =0: // Disable.
deltaMode.SpecularTextureEnable =0; // Disable.

deltaM ode.DepthEnable =1; // Enable.

deltaMode.SmoothShadingEnable =1; // Enable.

deltaM ode. TextureEnable =0; // Disabled.

deltaM ode.FogEnable =1; // Enabled, but controlled from
/l the draw command.

deltaM ode.DepthFormat =2; [l 24 bit Z buffer.

deltaMode. TargetChip =0; // GLINT 300SX

LD REG (__ DeltaTagDeltaMode, * ((long *) &deltaMode));

I/ Set up the draw command data.

3D/.b5 Proprietary and Confidential 21-9

Appendices

21-10

drawCmd.pad =0;
drawCmd.SubPixel CorrectionEnable
drawCmd.CoverageEnable
drawCmd.FogEnable =0;
drawCmd.TextureEnable =0;
drawCmd.SyncOnHostData
drawCmd.SyncOnBitMask
drawCmd.UsePointTable =0
drawCmd.AntiaiasingQuality
drawCmd.AntialiasEnable =0;
drawCmd.PrimitiveType =2;
drawCmd.reserved =0;
drawCmd.FastFillEnable =0;

drawCmd.ResetLineStipple
drawCmd.LineStippleEnable
drawCmd.AreaStippleEnable

Proprietary and Confidential

GLINT R4 Programmer’s Guide Volume ||

=0; // Enable
=0; //Disable.
// Disable.
// Disable.
=0; //Disable.
=0; //Disable.
// Disable.
=0; // Not used.
// Disable.

Il ** Point **

// Disable.
=0; //Disable.
=0; //Disable.
=0; // Disable.

3D/.bs

GLINT R4 Programmer’s Guide Volume llI

3D/.bs

I/ We need to ensure that the end vertex of theline (in V1) can

I/ never be the same as the point vertices. Any X (or Y) coordinate
// which is out of the normal range (0.0 to screen width) will do

I/ soin this case an X of -1.0 has been used.

float tempEndCoord =-1.0;

LD PARAM ((__Delta V1FloatTag + paramX), tempEndCoord);

Proprietary and Confidential

Appendices

21-11

Appendices GLINT R4 Programmer’s Guide Volume ||

for (v =0; v < verticesinMesh; v++)

{

LD PARAM((__Delta VOFloatTag + paramR), mesh[v].r);
LD _PARAM((__Dedta VOFloatTag + paramG), mesh[v].g);
LD PARAM((__Deta VOFloatTag + paramB), mesh[v].b);
LD PARAM((__Delta VOFloatTag + paramA), mesh[v].a);
LD PARAM((__Delta VOFloatTag + paramX), mesh[v].X);
LD PARAM((__Delta VOFloatTag + paramY'), mesh[v].y);
LD _PARAM((__Delta VOFloatTag + paramZ), mesh[v].z);

for (rect = O; rect < numberClipRectangles; rect++)
{
// Load in the scissor rectangle.
LD_REG(ScissorMinXY Tag, (clipRectangles[rect].scissorMin.y << 16

clipRectangles[rect].scissorMin.x));
LD REG(ScissorMaxXY Tag, (clipRectangleq[rect].scissorMax.y <<
16 |
clipRectangles[rect] .scissorM ax.x));

if (rect ==0)
{
LD _REG(DrawLineO1Tag, *((long *) &drawCmd));

}

ese

{
LD REG(RepeaiLineTag, 0); // datafield not used.
}
}
}
}

21-12 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

// This array holds the order we are going to visit the
I/ vertices in to draw each line segment.

int lineOrder[12] ={1,0, 2,4,6,5,4, 3,2, 1, 3, 5};

/] This function draws the mesh as a series of lines. The order thelines are
/[drawn in is hardcoded (thisis only an example!).

void LineMesh (gal &cx)

{

3D/.bs

__DeltaModeFmat deltaMode;
__DetaRenderFmat drawCmd,;

int vertexStore;
int rect, i, v;

I/l Assume the rendering deviceis already initialized. Note we expect the
// BiasCoords mode in the RasterizerM ode register to be set to
I/ add a bias of zero.

Il Set up the DeltaM ode register.

deltaM ode.pad =0

deltaMode. TextureParameterMode =2; // Auto normalize.

deltaM ode.ClampEnable =1, // Clamp enabled.
deltaMode.NoDraw =0; // Do drawing.

deltaM ode.DiamondExit =1; // Not needed for this example.

deltaM ode.SubPixel CorrectionEnable =1; // Enable sub pixel correction.
deltaMode.DiffuseTextureEnable =0; // Disable.
deltaMode.SpecularTextureEnable =0; // Disable.

deltaM ode.DepthEnable =1; // Enable

deltaM ode. SmoothShadingEnable =1; // Enable.

deltaM ode. TextureEnable =0; // Disabled.

deltaM ode.FogEnable =1; // Enabled, but controlled from
/] the draw command.

deltaM ode.DepthFormat =2: [l 24 bit Z buffer.

deltaMode. TargetChip =0; // GLINT 300SX

LD REG (__DeltaTagDeltaMode, *((long *) &deltaMode));

Proprietary and Confidential 21-13

Appendices

21-14

/I Set up the draw command data.

GLINT R4 Programmer’s Guide Volume ||

drawCmd.pad =0
drawCmd.SubPixelCorrectionEnable =1; // Enable.
drawCmd.CoverageEnable =0; //Disable.
drawCmd.FogEnable =0; //Disable.
drawCmd.TextureEnable =0; /I Disable.
drawCmd.SyncOnHostData =0
drawCmd.SyncOnBitMask =0; // Disable.
drawCmd.UsePointTable =0; //Disable.
drawCmd.AntialiasingQuality =0; // Not used.
drawCmd.AntiaiasEnable =0; /I Disable.
drawCmd.PrimitiveType =0; /lLine
drawCmd.reserved =0;
drawCmd.FastFillEnable =0; //Disable.
drawCmd.ResetLineStipple =0;
drawCmd.LineStippleEnable =0; //Disable.
drawCmd.AreaStippleEnable =0; /I Disable.

Proprietary and Confidential

// Disable.

// Disable.

3D/.bs

GLINT R4 Programmer’s Guide Volume llI Appendices

for (I =0;1<12; i++)

{

16|

16|

3D/.bs

v = lineOrder[i];
vertexStore=__ Delta VOFloatTag + 16 * (i % 2);

LD_PARAM((vertexStore + paramR), mesh[v].r);
LD PARAM((vertexStore + paramG), mesh[v].Q);
LD PARAM((vertexStore + paramB), mesh[v].b);
LD PARAM((vertexStore + paramA), mesh[v].a);
LD _PARAM((vertexStore + paramX), mesh[v].x);
LD _PARAM((vertexStore + paramY), mesn[v].y);
LD PARAM((vertexStore + paramZ), mesh[v].z);

if (i >= 1)

{

/I We now have enough verticesto draw aline.
for (rect = O; rect < numberClipRectangles; rect++)

{

// Load in the scissor rectangle.
LD_REG(ScissorMinXY Tag, (clipRectangle[rect].scissorMin.y <<

clipRectangleg[rect].scissorMin.x));
LD_REG(ScissorMaxXY Tag, (clipRectangleg[rect].scissorMax.y <<

clipRectangles[rect] .scissorM ax.x));

if (rect == 0)
{ if (i & 1)
{ LD_REG(DrawLine01Tag, *((long *) &dravCmd));
oo
{ LD_REG(DrawLinel0OTag, *((long*) &dravCmd));
} }
else

Proprietary and Confidential 21-15

Appendices GLINT R4 Programmer’s Guide Volume ||

{
LD REG(RepeatLineTag, 0); // datafield not used.

21-16 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

// This function draws the mesh as a series of shaded triangles.

void TriangleMesh (gal &cx)

{

3D/.bs

__DeltaModeFmat deltaMode;
__DeltaRenderFmat drawCmd;
int vertexStore;

int rect, v;

// Assume the rendering device is aready initialized. Note we expect the
// BiasCoords mode in the RasterizerM ode register to be set to
// add a bias of zero.

/I Set up the DeltaM ode register.
deltaM ode.pad =0;
deltaM ode. TextureParameterM ode =2: [/ Auto normalize.
deltaM ode.ClampEnable =1; // Clamp enabled.
deltaM ode.NoDraw =0; // Do drawing.
deltaM ode.DiamondExit =1; // Not needed for this example.
deltaM ode.SubPixel CorrectionEnable = 1; // Enable sub pixel correction.
deltaM ode.DiffuseT extureEnable =0; /I Disable.
deltaMode.SpecularTextureEnable =0; // Disable.
deltaM ode.DepthEnable =1; // Enable.
deltaMode.SmoothShadingEnable =1; // Enable.
deltaM ode. TextureEnable =0; /I Disabled.
deltaM ode.FogEnable =1; // Enabled, but controlled from

// the draw command.
deltaM ode.DepthFormat =2; [l 24 bit Z buffer.
deltaMode. TargetChip =0; // GLINT 300SX

LD REG (__ DeltaTagDeltaMode, * ((long *) &deltaMode));

Il Set up the draw command data.

drawCmd.pad =0;
drawCmd.SubPixel CorrectionEnable =1; // Enable.
drawCmd.CoverageEnable =0; //Disable.

Proprietary and Confidential 21-17

Appendices

21-18

drawCmd.FogEnable
drawCmd.TextureEnable
drawCmd.SyncOnHostData
drawCmd.SyncOnBitMask
drawCmd.UsePointTable
drawCmd.AntiaiasingQuality
drawCmd.AntialiasEnable
drawCmd.PrimitiveType
drawCmd.reserved
drawCmd.FastFillEnable
drawCmd.ResetLineStipple
drawCmd.LineStippleEnable
drawCmd.AreaStippleEnable

Proprietary and Confidential

GLINT R4 Programmer’s Guide Volume ||

=0; //Disable.
=0; //Disable.
=0; //Disable.
=0; //Disable.
=0; //Disable.
=0; // Not used.
=0; //Disable.

=1; // Trapezoid.

=0; //Disable.
=0; //Disable.
=0; //Disable.
=0; //Disable.

3D/.bs

GLINT R4 Programmer’s Guide Volume llI Appendices

for (v =0; v < verticesinMesh; v++)

{

16|

16|

3D/.bs

vertexStore=__ Delta VOFloatTag + 16 * (v % 3);

LD _PARAM((vertexStore + paramR), mesh[v].r);
LD _PARAM((vertexStore + paramG), mesn[v].Q);
LD PARAM((vertexStore + paramB), mesh[v].b);
LD PARAM((vertexStore + paramA), mesh[v].a);
LD PARAM((vertexStore + paramX), mesh[v].x);
LD _PARAM((vertexStore + paramY), mesn[v].y);
LD_PARAM((vertexStore + paramZ), mesh[v].z);

if (v>=2)

{
/' We now have enough verticesto draw atriangle.
for (rect = O; rect < numberClipRectangles; rect++)

{

// Load in the scissor rectangle.
LD_REG(ScissorMinXY Tag, (clipRectangleq[rect].scissorMin.y <<

clipRectangleg[rect].scissorMin.x));
LD REG(ScissorMaxXY Tag, (clipRectangles[rect].scissorMax.y <<

clipRectangles[rect] .scissorM ax.x));

If (rect ==0)
{
LD REG(DrawTriangleTag, *((long *) &drawCmd));
}
else
{
LD REG(RepeatTriangleTag, 0); // datafield not used.
}

Proprietary and Confidential 21-19

Appendices GLINT R4 Programmer’s Guide Volume ||

21.3

21.31

21.3.2

21-20

Interpolation Calculation

Color Gradient Interpolation
To draw from left to right, top to bottom, the color gradients (or deltas) required are:

And from the plane equation:

where, to be independent of the order the vertices are provided:

These values allow the color of each fragment in the triangle to be determined by linear
interpolation. For example, to calculate the red component color value of a fragment at
Xn,Ym:

. add dRdy, for each scanline between Y1 and Yn, to R1, then
« add dRdx for each fragment along scanline Yn from the left edge to Xn.

The example chosen has the ‘knee’ i.e. vertex 2, on the right hand side, and drawing is
from left to right. If the knee were on the left side (or drawing was from right to left), then
the Y deltas for both the subordinate sides would be needed to interpolate the start values
for each color component (and the depth value) on each scanline. For this reason GLINT
R4 always draws triangles starting from the dominant edge and towards the subordinate
edges. For the example triangle, this means left to right.

Register Set Up for Color Interpolation

For the example triangle, GLINT R4 registers must be set as follows for color interpolation.
Note color values are in 24 bit, fixed point 2's complement 9.15 format.

/I Load the color start and delta values to draw
/[atriangle

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

Rstart (R1)

Gstart (G1)

Bstart (B1)

dRdyDom (dRdy13) // To wak up the dominant edge
dGdyDom (dGdy13)

dBdyDom (dBdy13)

dRdx (dRdx) /l To walk along the scanline

dGdx (dGdx)
dBdx (dBdx)

21.3.3 Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or deltas) required for
interpolation are:

And from the plane equation:

where, as before:

The divisor, shown here as c, is the same as for color gradient values. The two deltas,
dzdy13 and dzdx allow the Z value of each fragment in the triangle to be determined by
linear interpolation as was described for the color interpolation above.

returned by the CFGDeviceld register in the is 0006h in bits 31-16.

3D/.b5 Proprietary and Confidential 21-21

Appendices GLINT R4 Programmer’s Guide Volume ||

21.4 Appendix F. Accurate Rendering

This appendix describes how to calculate the various parameters needed to define a
Gouraud shaded triangle. This topic is covered in section 1.1.2, however in the interest of
simplicity some of the finer details were glossed over. The quality of the rasterization and
shading suffers where these fine details are not included and will give rise to ’'stitch marks’
and 'bright edge’ artifacts. The main area where simplifications were made earlier relates
to the fact that vertices are not, in general, coincident with pixel centers so sub pixel
corrections are necessary. The initial values being interpolated (RGB for example) need to
be adjusted to account for this. GLINT R4 does the necessary X corrections when moving
from scan line to scan line when the SubPixelCorrection bit is set, but the initial Y
correction must be done in software.

Consider a sample triangle, highly magnified to emphasize the sub pixel corrections
needed:

The vertices are sorted into Y order and the dominant edge is AC. Scan conversion will
start at vertex A and proceed upwards. The origin is bottom left.

The usual parameters to interpolate (denoted P in the diagram) across the triangle would
include color (R, G, B and alpha), depth (2), fog (F), and texture (S, T, Q, Ks and Kd). The
source code to set up GLINT R4 to achieve the best quality rendering will only calculate
the parameters for RGBA and Z to keep the size of the code down.

21-22 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI

3D/.bs

#include <stdio.h>
#include <float.h>

/I A simple macro which just prints out the register name and value.
I/l Replace this with some code to writeto GLINT R4.

#define LD_GLINT R4_REG(name, value) \
printf ("%s = %08x\n", #name, value)

/] This software is part of the application note which describes

// how GLINT R4 is set up to get the best quality rendering. Particular

/I care istaken to avoid cracks, stitch marks and bright edge artifacts

{/l from occurring. The OpenGL rasterization rules are used.

/I The software has not been written with maximum performance in mind,
// but as a clear, well documented example covering the nuances

/I which are easily overlooked.

/I Simple vertex structure used to interface parameters to the RenderTriangle
{/ function.

typedef struct{ float x,y, z /[in device coords
float r,g,b,a //intherange0.0to 1.0
} Vertex;

I Prototypes.

long IntToFixedPoint16 (long i);

long FloatToColor (float f);

long FloatToCoordinate (float f);

void FloatToDepth (float f, long *zi, long *zf);

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2);

I/ Defines some simple function to convert from floating point numbers

Proprietary and Confidential

Appendices

21-23

Appendices

21-24

GLINT R4 Programmer’s Guide Volume ||

/I to various fixed point formats. These can be inlined if necessary.

long IntToFixedPoint16 (long i)
{

return i << 16;

Il These functions perform the conversion from floating point numbers

/I to the various fixed point format numbersrequired in GLINT R4. They
Il are implemented as simple operations on the binary representation

/I of IEEE single precision floating point number so the floating

/1 point rounding mode doesn’t need to be set up first and in many

/I cases they are faster than using the built in conversion functions,

Il especialy when the range checking and clamping is taken into account.

/I Format of IEEE single-precision (32-bit) real number.

#defineF_BIAS 127

#define F_SIGN_BIT 31
#define F_EXPONENT_BITS 23
#define F_FRACTION_BITS0

/I Convert 32-bit floating-point value to 9.15 fixed-point value used
I/ for the color parameters. The input rangeis assumed to be 0.0
//t0 1.0. Theagorithmis:

I/ 1f exponent < -15 then return (0x00000000), otherwise

Il if exponent < 8 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
/1 return ((s == 1) ? Oxff800000 : Ox007fffff).

long FloatToColor (float fi)

{
long f=*((long *) &fi);
long sign;
unsigned char exponent;

sign = (f >>F_SIGN_BIT);

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

3D/.bs

exponent = (unsigned char)(f >> F_EXPONENT_BITS);
if (exponent < (F_BIAS-15))

return (0);
if (exponent < (F_BIAS+8))
{

f = ((unsigned long)((f | 0x00800000) << 8)

>> ((F_BIAS+16) - exponent));
if (Sgn<0)
f=-f;
return (f);

}
return (Ox007fffff /A sign);

I/l Convert 32-bit floating-point value to 16.16 fixed-point value used
/I for the rasterizer parameters.

/' If exponent < 0 then return (0x00000000), otherwise

Il if exponent < 31 then return (-1**(s) * 1.f * 2**(e- 127)), otherwise
/I return ((s== 1) ? 0x80000000 : Ox7fffffff).

long FloatToCoordinate (float fi)

{

long f=*((long *) &fi);
long sign;

unsigned char exponent;

long res;

sign=f>>F SIGN_BIT;
exponent = (unsigned char) (f >> F_EXPONENT_BITS);
if (exponent < (F_BIAS-16))

return (0);
if (exponent < (F_BIAS+15))
{

res = ((unsigned long)((f | 0x00800000) << 8)

>> ((F_BIAS+15) - exponent));

Proprietary and Confidential 21-25

Appendices GLINT R4 Programmer’s Guide Volume ||

if (sign<0)
res = -res,
return (res);

}
return (Ox7fffffff N sign);

Il Convert 32-bit floating-point value to 24.16 fixed-point value as

Il used by the Z values. Note that this assumes a 24 bit Z buffer.

Il'1f exponent < -16 then return (0x0000000000000000), otherwise
Il'if CLAMP_24 16 is defined and is non-zero:

I1'if exponent < 23 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
/1 return ((s == 1) ? Oxff80000000000000 : Ox007fffffffff0000).

/I otherwise:

[l return (-1**(s) * 1.f * 2**(e- 127)).

void FloatToDepth (float fi, long *zi, long *zf)
{

long f=*((long *) &fi);

long sign;

unsigned char exponent;

long resh;

unsigned long redl;

sign = (f >> F_SIGN_BIT);
exponent = (unsigned char)(f >> F_EXPONENT_BITS);
if (exponent < (F_BIAS-16))
{
*7i =0,
*zf = 0;
return;
}
if (exponent < (F_BIAS+23))
{
f = ((f | 0x00800000) << 8);
if (exponent < (F_BIAS+0))

21-26 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI

3D/.bs

}

else

{

}

}

resh =0;

red = ((unsigned long) f >> ((F_BIAS-1) - exponent));

else

{

}

unsigned char shift;

shift = ((F_BIAS+31) - exponent); // 8 <= shift <32
resh = ((unsigned long) f >> shift);

res = (f << (31 - shift)); /1 shifts >= 32 undefined
res <<=1; I/ so we must shift twice

if (Sgn<0)

{

unsigned long old_red;

resl = ~red;
resh = ~resh;
old red =red;

resl += 0x00010000;
if (red <old_red) I overflow
++resh;

resh = (OxO07fffff ~ sign);
red = (OxffffO000 ~ sign);

red &= OxffffO00O;
*7i = resh;
*zf = red;

Proprietary and Confidential

Appendices

21-27

Appendices

21-28

GLINT R4 Programmer’s Guide Volume ||

#define SAME 0
#define REVERSED ~SAME
#define ORDER(VO, v1, v2, order) {a=VvO0; b = v1; c = v2; windingOrder = order;}

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2)

{

float dxAB, dyAB, dxBC, dyBC, dxAC, dyAC; // Diff in x,y for each edge.
float drAC, dgAC, dbAC, daAC, dzAC; // Diff in rgbz for dominant edge
float drBC, dgBC, dbBC, daBC, dzBC; /I Diff inrgbz for the BC edge.
float dxdyAC, dxdyAB, dxdyBC; // Edge gradients for unit
Il setiny
float drdxdy, dgdxdy, dbdxdy;
float dadxdy, dzdxdy;
float drdx, dgdx, dbdx, dadx, dzdx; // Gradients for unit step in x.
float r0, g0, b0, a0, z0; /I Start values
float area, oneOverArea, t1, t2;
float oneOverdyAC;
Vertex *a, *b, *c; /' Sorted vertices.
long xDomFixed, xSubFixed;
float dyErr, yBottom, yTop;
long iyBottom, iyTop;
int windingOrder; /I Not used.
long 1z, zf;
long temp;

Il Sort vertices into ascending Y order. *a points to the vertex with the

I/ lowest y value. Compare winding order of the pre and post sorted vertices
I/ and set winding order flag as appropriate (thisis only needed if culling

// based on the winding order isto be done).

if (VvO->y <v1->y)
{
if (v1->y <v2->y)
ORDER (v0, v1, v2, SAME)
ese
if (VO->y <v2->y)
ORDER (v0, v2, v1, REVERSED)

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI

3D/.bs

else
ORDER (v2, v0, v1, SAME)
}

ese
{
if (v1->y <v2->y)
{
if (VO->y <v2->y)
ORDER (v1, v0, v2, REVERSED)
ese
ORDER (v1, v2, vO, SAME)
}
else
ORDER (v2, v1, vO, REVERSED)

/I Compute signed area of the triangle.

I/ Form vectors for two edges of the triangle.
dXAC = a>X - ¢->X;

dxBC = b->x - ¢->X;

dyAC = a>y - ¢->y;

dyBC = b->y - ¢c->y;

/I Form the cross product of the two edges.
area=dxAC * dyBC - dxBC * dyAC;

if (area==0.0)
return; /I Reject zero areatriangles.

/I A negative area just means the order of the vertices, after sorting, was
/I clockwise. Note this may be different from original input order.
if (area<0.0)

area= -area; /l Make positive.

I/l The dx/dy value (change in x for unit change in y) are needed for
Il each edge so the rasterizer can compute the new left and right hand
/I x coordinates as it steps from one scan line to the next. Horizontal

Proprietary and Confidential

Appendices

21-29

Appendices

21-30

GLINT R4 Programmer’s Guide Volume ||

Il or near horizontal edgeswill have very large gradients but these will
// be handled later. Vaues for AC and BC have aready been calculated so
/I just do the remaining edge.

dxAB = a>X - b->X;
dyAB = a>y - b->y;

I/l The dominant edgeis aways AC (i.e. the edge with the maximum Y extent).
// Compute the change in rgbaz along this edge for unit changein'y.
oneOverdyAC = 1.0/ dyAC;

/I Differences along edge AC
drAC = a>r - ¢->r1;

dgAC = a>g- c->0;

dbAC = a>b - ¢c->b;
daAC=a>a- c->g;

dzZAC = a>z - ¢->z;

Il Gradient along edge AC for each parameter.
drdxdy = drAC * oneOverdyAC;

dgdxdy = dgAC * oneOverdyAC;

dbdxdy = dbAC * oneOverdyAC;

dadxdy = daAC * oneOverdyAC;

dzdxdy = dzAC * oneOverdyAC;

dxdyAC = dxAC * oneOverdyAC;

/I Difference along edge BC
drBC = b->r - c->r;

dgBC = b->g - ¢->g;

dbBC = b->b - c->b;

daBC = b->a- c->g

dzBC = b->z - ¢->z;

/I Compute the change in rgbaz when taking unit stepsin x.
oneOverArea= 1.0/ areg;

t1 = dyAC * oneOverAreg;

Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI Appendices

3D/.bs

t2 = dyBC * oneOverArezg;

drdx =drAC* t2 - drBC * t1;

dgdx = dgAC * t2 - dgBC * t1;
dbdx = dbAC * t2 - dbBC * t1;
dadx = daAC * t2 - daBC * t1,
dzdx =dzAC * t2 - dzBC * t1;

/I A generd triangle will need to be split into two trapezoids for
// rendering. Either of these trapezoids may have azero height in
/l which case the triangle has a flat top or bottom. The rasterizer
// and DDAs are still set up, however the count may be zero.

/' Fill lower trapezoid.
yBottom = &>y,
yTop = b->y;

/I They coordinates are converted to integer values, taking into
/I account the openGL rules which determine which pixels fall within
// the boundary.

temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
temp += 0x00007fff; /l add in nearly a half

iyBottom = temp >> 16; /I extract integer part

temp = (int) FloatToCoordinate (yTop); // float to 16.16 fixed point
temp += 0x00007fff; /l add in nearly a half

iyTop =temp >> 16; /I extract integer part

dyErr = iyBottom + 0.5 - yBottom;

/I Check for the case when AB isatrue horizontal edge to prevent adivide

I/l by zero.
if (dyAB ==0.0)
dyAB = FLT_MIN; /I set to avery small number.

dxdyAB = dxAB / dyAB;

Proprietary and Confidential 21-31

Appendices GLINT R4 Programmer’s Guide Volume ||

Il Move the rgbaz values at vertex aalong the edge AC in proportion
/I to how far the vertex aisfrom the pixel center in they direction

// to do the sub pixel adjustment in Y. GLINT R4 does the sub pixe
I/l adjustment in X automatically, if enabled.

r0 = a>r + dyErr * drdxdy;

g0 = a>g + dyErr * dgdxdy;
b0 = a>b + dyErr * dbdxdy;
a0 = a>a+ dyErr * dadxdy;
z0 = &>z + dyErr * dzdxdy;

I/ Similarly for the start values for the left and right hand edges.
xDomFixed = FloatToCoordinate (a->x + dyErr * dxdyAC);
xSubFixed = FloatToCoordinate (a->x + dyErr * dxdyAB);

/l Load up GLINT R4 with the parameters.

I/ Rasterizer. Note that the RasterizerMode is set to add
/I _GLINT R4_START_BIAS ALMOST_HALF to the XDom, XSub and
/'Y Start values to conform to the OpenGL rasterization rules.

LD_GLINT R4_REG(StartX Dom, xDomFixed);

LD GLINT R4 REG(dXDom. FloatToCoordinate (dxdyAC));
LD_GLINT R4_REG(StartX Sub, xSubFixed);

LD GLINT R4 REG(dXSub, FloatToCoordinate (dxdyAB));
LD_GLINT R4_REG(StartY, IntToFixedPoint16 (iyBottom));
LD_GLINT R4_REG(dy, IntToFixedPoint16 (1));

LD GLINT R4 REG(Count, (iyTop - iyBottom));

// Color DDA.

LD GLINT R4 REG(Rstart, FloatToColor (r0));
LD_GLINT R4_REG(dRdx, FloatToColor (drdx));

LD GLINT R4 _REG(dRdyDom, FloatToColor (drdxdy));
LD_GLINT R4_REG(Gstart, FloatToColor (g0));
LD_GLINT R4_REG(dGdx, FloatToColor (dgdx));

LD GLINT R4 _REG(dGdyDom, FloatToColor (dgdxdy));

21-32 Proprietary and Confidential 3D/.abs

GLINT R4 Programmer’s Guide Volume llI

3D/.bs

LD_GLINT R4 _REG(Bstart, FloatToColor (b0));
LD_GLINT R4 _REG(dBdx, FloatToColor (dbdx));

LD GLINT R4 _REG(dBdyDom, FloatToColor (dbdxdy));
LD_GLINT R4_REG(AStart, FloatToColor (a0));
LD_GLINT R4 _REG(dAdx, FloatToColor (dadx));
LD_GLINT R4_REG(dAdyDom, FloatToColor (dadxdy));

// Depth DDA.

FloatToDepth (20, &zi, & zf);
LD_GLINT R4_REG(ZStartU, zi);
LD_GLINT R4_REG(ZStartL, zf);

FloatToDepth (dzdx, &zi, & zf);
LD_GLINT R4_REG(dzZdxU, zi);
LD _GLINT R4 REG(dZdxL, zf);

FloatToDepth (dzdxdy, &zi, & zf);
LD_GLINT R4_REG(dZdyDomU, zi);
LD_GLINT R4_REG(dzdyDomL, zf);

/I Render the trapezoid ...
LD_GLINT R4_REG(Render, 0x00014041);

I/ Fill upper trapezoid.
yBottom = b->y;
yTop = c->y;

/I They coordinates are converted to integer values, taking into
/I account the openGL rules which determine which pixels fall within
// the boundary.

temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
temp += 0x00007fff; /l add in nearly a half
iyBottom = temp >> 16; I extract integer part

temp = FloatToCoordinate (yTop); I/ float to 16.16 fixed point
temp += 0x00007fff; /l add in nearly a half

Proprietary and Confidential

Appendices

21-33

Appendices

GLINT R4 Programmer’s Guide Volume ||

iyTop = temp >> 16; /I extract integer part
// Find the dyErr value for vertex B so that the start value for x can be
Il corrected.

dyErr = iyBottom + 0.5 - yBottom;

/I Check for the case when BC is atrue horizontal edge to prevent adivide

I by zero.
if (dyBC==0.0)
dyBC =FLT_MIN; / set to avery small number.

dxdyBC = (dxBC / dyBC);

Il Set up the rasterizer for the upper trapezoid. All other DDA units
I/ can carry on with their parameters as they are walking up the same
I/ edge.

xSubFixed = FloatToCoordinate (b->x + dyErr * dxdyBC);
LD_GLINT R4_REG(StartX Sub, xSubFixed);

LD_GLINT R4_REG(dxSub, FloatToCoordinate (dxdyBC));
LD_GLINT R4_REG(ContinueNewSub, (iyTop - iyBottom));

21.5 Glossary
accumulation buffer A color buffer of higher resolution than the displayed buffer

(typically 16bits per component for an 8bit per component
display). Typically used to sum the result of rendering several
frames from slightly different viewpoints to achieve motion blur
effects or eliminate aliasing effects.

active fragment A fragment which passes all the various culling tests, such as

aliasing

scissor, depth(Z), alpha, etc., is written to/combined with the
corresponding pixel in the framebuffer. See also "fragment” and
"passive fragment".

A phenomena resulting from a rendering style which ignores the
fact that a pixel may not be wholly covered by a primitive, leading
to jagged edges on primitives.

alpha buffer A memory buffer containing the fourth component of a pixel's

21-34

color in addition to Red, Green and Blue. This component is not
displayed, but may be used for instance to control color blending
and antialiasing.

Proprietary and Confidential 3D/.abs

Appendix

alpha test

antialiasing

bitblt

block write

command register

context

control register

culling

DDA

depth (Z) buffer

depth-cueing

dithering

double-buffering

21-2

GLINT R4 Programmer’s Guide Volume IlI

A test used to cull selected fragments from being drawn, based
on a comparison of a fixed value with the alpha value of the
fragment.

A rendering style which weights the color of a pixel by the fraction
of its area that is covered by primitives, leading to reduction or
elimination of jagged edges.

Bit aligned block transfer. Copy of a rectangular array of pixels in
a bitmap from one location to another.

A feature provided in some SGRAM devices which allows multiple pixels
to be set to a given value by a single write. See also fast fill which is an
alternative name for the same feature.

A register which when loaded triggers activity in GLINT R4. For instance
the Render command register when loaded will cause GLINT R4 to start
rendering the specified primitive with the parameters currently set up in
the control registers.

The state information associated with a particular task. Typically in a
system more than one task will be using GLINT R4 to render primitives.
Software on the host must save away the current contents of the GLINT
R4 control registers when suspending one task to allow another to run,
and must restore the state when that task is next scheduled to run.

A register which contains state that dictates how GLINT R4 will
execute a command.

The process of eliminating a fragment, object face, or primitive, so
that it is not drawn.

Digital Differential Analyzer. An algorithm for determining the
pixels to draw along a line or polygon edge. Also used to
interpolate linearly varying values such as color and depth.

A memory buffer containing the depth component of a pixel. Used
to, for example, eliminate hidden surfaces.

A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. See also fogging.

A rendering style which increases the perceived range of
displayed colors at the cost of spatial resolution. The technique is
similar to the use of stippled patterns of black and white pixels, to
achieve shades of grey on a black and white display.

A technique for achieving smooth animation, by rendering only to
an undisplayed back buffer, and then swapping the back buffer to
the front once drawing is complete.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume Il

fast fill

fogging

Fast Clear Planes

fragment

framebuffer

Graphic ID (GID)

host
localbuffer

passive fragment

pixel

primitive

rasterization

rendering

scissor test

3D/abs

Glossary

A feature provided in SGRAM devices which allows multiple pixels
to be set to a given value by a single write. See also block write
which is an alternative name for the same feature.

A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. See also depth-cueing.

Used to allow higher animation rates by enabling localbuffer pixel
data, such as depth (2), to be cleared down - not required or
supported in GLINT R4

A fragment is an object generated as a result of the rasterization
of a primitive. It corresponds to and contains all the components
of a single pixel. If a fragment passes all the various culling tests,
such as scissor, depth(Z), alpha, etc., it will be written
to/combined with the corresponding pixel in the framebuffer.

An area of memory containing the displayable color buffers (front,
back, left, right, overlay, underlay), their (optional) associated
alpha components, and any associated (optional) window control
information. This memory is typically separate from the
localbuffer.

A component of a pixel containing information used for per pixel
clipping.
The processor which controls GLINT R4.

An area of memory which may be used to store the following non-
displayable pixel information: depth(Z), stencil, Graphic ID.

A fragment which fails one or more of the various culling tests,
such as scissor, depth(Z), alpha, etc., is nor written to/combined
with the corresponding pixel in the framebuffer. See also
"fragment" and "active fragment".

Picture element. A pixel comprises the bits in all the buffers
(whether stored in the localbuffer or framebuffer), corresponding
to a particular location in the framebuffer.

A geometric object to be rendered. The GLINT R4 primitives are
points, lines, trapezoids (including triangles as a subset), and
bitmaps.

The act of converting a point, line, polygon, or bitmap, in device
coordinates, into fragments.

Conversion of primitives in object coordinates into an image.

A means of culling fragments which lie outside the defined scissor
rectangle. The scissor rectangle is defined in device coordinates.

Proprietary and Confidential 21-3

Appendix

stencil buffer

stipple

task

texel

texture

texture mapping

window control buffer

writemask

21-4

GLINT R4 Programmer’s Guide Volume IlI

A buffer used to store information about a pixel which controls
how subsequent stenciled fragments at the same location may be
combined with its current value. Typically used to mask complex
two-dimensional shapes.

A one or two dimensional binary pattern which is used to cull
fragments from being drawn.

A process, or thread on the host which uses the GLINT R4
coprocessor. Typically tasks assume that they have sole use of
GLINT R4 and rely on a device driver to save and restore their
GLINT R4 context, when they are swapped out.

Texture element. An element of an image stored in texture
memory which represents the color of the texture to be applied
(fully or in part) to a corresponding fragment.

An image used to modify the color of fragments during
processing. Often used for instance to achieve high realism in a
scene, with relatively few primitives.

The process of applying a two dimensional image to a primitive.
For instance to apply a wood grain effect to a table.

A buffer containing control bits used by display hardware to select
between multiple hardware LUTs or display buffers (such as
overlay and underlay) on a per pixel basis. Usually a given value
in the buffer corresponds to a single window on the screen.

A bit pattern used to enable or inhibit the writing of the
corresponding bits of a fragment’s color into the framebuffer.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume llI Glossary

22

Volume Il Index

AlphaBlend, 15-2, 15-4 Disabling units not in use, 20-3
AlphaBlend Example, 15-11 Dither Example, 16-6
AlphaBlend Unit, 15-1 dithering, 21-2
AlphaBlending, 15-2, 15-4 Dithering, 16-4
aphabuffer, 15-3, 16-5, 21-34 Dither M ode, 16-4, 16-5, 16-6
Alphatest, 13-7 DMA
AlphaTest, 13-7 Using the Bus Mastership, 20-3
AlphaTest, 13-7 dRdx, 21-20
AlphaBlendM ode, 15-3, 15-4, 15-5, 15-8 dy, 20-4
AlphaTestMode, 13-7, 13-8 Enabling Writing, 19-7
antialiasing, 21-2 extent checking, 18-2
Application Initialization, 19-8 Extent Checking, 18-2
block write, 21-2 Fast double buffering in awindow, 20-2
chroma, 15-9 fast fill, 21-3
Chromal ower, 15-9 FBColor, 14-1, 18-1
ChromaTestM ode, 15-9 FBData, 15-5
ChromaUpper, 15-9 FBDestReadMode, 16-8
Cl Fogging Equation, 13-4 FBHardwareWriteMask, 17-1
Color Format, 19-6 FBReadM ode, 14-1, 14-2, 19-7
Color Format Example FBSoftwareWriteMask, 17-1

3:3:2, 16-6 FBWriteData, 16-7

8:8:8:8, 16-6 FBWriteM ode, 15-5
Color Format Unit, 16-1 Filter Mode Example, 18-1
Color Index Format Example, 16-7 Filtering, 18-1
Color Interpolation, 21-20 FilterMode, 18-1, 18-2, 18-3, 18-4
command register, 21-2 Fog, 13-1
context, 21-2 Fog Example, 13-5
control register, 21-2 Fog Index Calculation - The Fog DDA, 13-1
delta, 21-20, 21-21 fogging, 21-3
depth (Z) buffer, 21-2 FogM ode, 13-4, 13-5
Depth Gradient, 21-21 framebuffer, 21-3
depth-cueing, 21-2 Framebuffer, 19-4
dFdx, 13-2 Bypass, 20-4
dFdyDom, 13-2 Framebuffer, 14-1
Disabling Speciaized Modes, 19-6 Framebuffer Depth, 19-3

3D/.b5 Proprietary and Confidential 5

Index

Framebuffer Read Span Operations, 14-2
GraphiclID, 21-3
Hardware Writemask Example, 17-2
Hardware Writemasks, 17-1
High Speed Flat Shaded Rendering, 16-7
Hogt, 18-1, 19-5
Image Formatting, 15-4
Improving PCI bus bandwidth for Programmed
I/O and DMA, 20-2
Initialization, 19-1
Initializing GLINT, 19-1
Interpolation
Calculating Color values, 21-20
L BReadFormat, 19-4
LBWriteFormat, 19-4
Loading registersin unit order, 20-4
localbuffer, 21-3
Localbuffer, 19-4
Bypass, 20-4
Logical Op, 16-7
Logica Op and Software Writemask Example,
16-10
Logical Operations, 16-8
LogicalOpMode, 16-7, 16-8
MaxHitRegion, 18-1, 18-3, 18-5
M axRegion, 18-2, 18-3, 18-5
Memory Configuration, 19-2
Merge-copy Span Operations, 14-2
MinHitRegion, 18-1, 18-3, 18-5
MinRegion, 18-2, 18-3, 18-5
Miscellaneous Generic Graphics Tips, 20-5
origin
window, 19-6
Origin
Setting, 19-6
PCI burst transfers under Programmed 1/0, 20-2
PCI bus, 19-2
PCI Disconnect Under Programmed 1/0O, 20-3
Performance Tips, 20-1

GLINT R4 Programmer’s Guide Volume ||

picking, 18-2
Picking Example, 18-5
PickResult, 18-1, 18-2, 18-5
PixelSize, 19-3
primitive, 21-3
pseudocode, 21-1
Rapid clear of the localbuffer & framebuffer, 20-3
Register Updates

Avoiding Unnecessary, 20-4
ResetPickResult, 18-2, 18-5
RGBA Fogging Equation, 13-3
scissor test, 18-2, 18-3
Screen Clipping Region, 19-4
Screen Width, 19-4
SGRAM Block Writes, 20-1
Software Writemask Example, 17-1
Software Writemasks, 17-1
Standard Framebuffer Read Operation, 14-1
StartXDom, 21-2
Statistic Operations, 18-2
StatisticM ode, 18-2, 18-4, 18-5
stencil buffer, 21-4
stipple, 21-4
Sync, 18-3, 18-6, 19-5
Sync Interrupt Example, 18-6
Synchronization, 18-3
System Initialization, 19-2
texture, 21-4
texture mapping, 21-4
UseConstantFBWriteData, 16-7
Video Timing, 19-3
Window Address

Setting, 19-6
window control, 21-4
Window Initialization, 19-6
Write Masks, 17-1
writemask, 21-4
Writemasks, 19-7
XOR Example, 16-9

6 Proprietary and Confidential 3D/.abs

